
CSCI-1200 Data Structures — Fall 2024

Lecture 16 – Trees, Part I

Announcements

• We are reviewing and selecting student submitted puzzles for the Homework 6 Contest.

• Deadline for the Homework 6 Contest is Tuesday, October 29th @ 11:59pm.
Contest submission will be worth 2 points on the regular Homework 6 grade.

Review of Associative Containers (STL Maps) from Lecture 15 & 16

• Maps are an association between two types, one of which (the key) must have a operator< ordering on it.

• The association may be immediate:

– Words and their counts.

– Words and the lines on which they appear

• Or, the association may be created by splitting a type:

– Splitting off the name (or student id) from rest of student record.

Today’s Lecture

• STL set container class (like STL map, but without the pairs!)

• Lists vs. Graphs vs. Trees

• Intro to Binary Trees, Binary Search Trees, & Balanced Trees

• In-order, pre-order, and post-order traversal

• Implementation of ds_set class using binary search trees

• WARNING: Trees are complicated, and we will spend 4 total lectures discussing the implementation details of
trees in preparation for Homework 8.

16.1 Standard Library Sets (STL Maps with only keys, no values)

• STL sets are ordered containers storing unique “keys”. An ordering relation on the keys, which defaults to
operator<, is necessary.

• Because STL sets are ordered, they are technically not traditional mathematical sets.

• Sets are like maps except they have only keys, there are no associated values. Like maps, the keys are constant.
This means you can’t change a key while it is in the set. You must remove it, change it, and then reinsert it.

• Access to items in sets is extremely fast! O(log n), just like maps.

• Like other containers, sets have the usual constructors as well as the size member function.

16.2 Set iterators

• Set iterators, similar to map iterators, are bidirectional: they allow you to step forward (++) and backward
(--) through the set. Sets provide begin() and end() iterators to delimit the bounds of the set.

• Set iterators refer to const keys (as opposed to the pairs referred to by map iterators). For example, the
following code outputs all strings in the set words:

for (std::set<string>::iterator p = words.begin(); p!= words.end(); ++p)

std::cout << *p << std::endl;



16.3 Set insert

• There are two different versions of the insert member function. The first version inserts the entry into the
set and returns a pair. The first component of the returned pair refers to the location in the set containing the
entry. The second component is true if the entry wasn’t already in the set and therefore was inserted. It is
false otherwise. The second version also inserts the key if it is not already there. The iterator pos is a “hint”
as to where to put it. This makes the insert faster if the hint is good.

pair<iterator,bool> set<Key>::insert(const Key& entry);

iterator set<Key>::insert(iterator pos, const Key& entry);

16.4 Set erase

• There are three versions of erase. The first erase returns the number of entries removed (either 0 or 1).
The second and third erase functions are just like the corresponding erase functions for maps. Newer versions
of STL specify that the erase functions return an iterator to the element after the removed element. This
matches the behavior of the vector and list erase functions.

size_type set<Key>::erase(const Key& x);

iterator set<Key>::erase(iterator p);

iterator set<Key>::erase(iterator first, iterator last);

16.5 Set find

• The find function returns the end iterator if the key is not in the set:

const_iterator set<Key>::find(const Key& x) const;

16.6 Overview: Lists vs. Trees vs. Graphs

• Trees create a hierarchical organization of data, rather than the linear organization in linked lists (and arrays
and vectors).

• Binary search trees are the mechanism underlying maps & sets (and multimaps & multisets).

• Mathematically speaking: A graph is a set of vertices connected by edges. And a tree is a special graph that
has no cycles. The edges that connect nodes in trees and graphs may be directed or undirected.

16.7 Definition: Binary Trees

• A binary tree (strictly speaking, a “rooted binary
tree”) is either empty or is a node that has pointers
to two binary trees.

• Here’s a picture of a binary tree storing integer
values. In this figure, each large box indicates a tree
node, with the top rectangle representing the value
stored and the two lower boxes representing pointers.
Pointers that are null are shown with a slash through
the box.

• The topmost node in the tree is called the root.

• The pointers from each node are called left and right.
The nodes they point to are referred to as that node’s
(left and right) children.

• The (sub)trees pointed to by the left and right
pointers at any node are called the left subtree and
right subtree of that node.

• A node where both children pointers are null is called
a leaf node.

• A node’s parent is the unique node that points to it.
Only the root has no parent.
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16.8 Definition: Binary Search Trees

• A tree is a graph without cycles (loops).
Exactly one path between every 2 nodes.

• Every node in a binary tree has 2 children
(one or both might be NULL).

• A binary search tree is a binary tree where
at each node of the tree, the value stored
at the node is

– greater than or equal to all values
stored in the left subtree, and

– less than or equal to all values stored in
the right subtree.

• Here is a picture of a binary search tree
storing string values.

zebraant

cat

dog

goat

horse

lion

mouse

mule

tiger

16.9 Definition: Balanced Trees

• The number of nodes on each subtree of each node in a “balanced” tree is approximately the same. In order to
be an exactly balanced binary tree, what must be true about the number of nodes in the tree?

• In order to claim the performance advantages of trees, we must assume and ensure that our data structure
remains approximately balanced. In our final lecture on trees we will see an algorithm to automatically
maintain the balance of a tree.

16.10 Exercise

Consider the following values:

4.5, 9.8, 3.5, 13.6, 19.2, 7.4, 11.7

1. Draw a binary tree with these values that is NOT a binary search tree.

2. Draw two different binary search trees with these values. Important note: This shows that the binary search
tree structure for a given set of values is not unique!

3. How many exactly balanced binary search trees exist with these numbers? How many exactly balanced
binary trees exist with these numbers?

3



16.11 In-order, Pre-order, and Post-order Traversal

• One of the fundamental tree operations is “traversing” the nodes in the tree and doing something at each node.
The “doing something”, which is often just printing, is referred to generically as “visiting” the node.

• There are three general orders in which binary trees are traversed: pre-order, in-order and post-order.

• These are usually written recursively, and the code for the three functions looks amazingly similar.

• Here’s the code for an in-order traversal to print the contents of a tree:

void print_in_order(ostream& ostr, const TreeNode<T>* p) {

if (p) {

print_in_order(ostr, p->left);

ostr << p->value << "\n";

print_in_order(ostr, p->right);

}

}

• Draw an exactly balanced binary search tree with the elements 1-7:

• The traversals for tree you just drew are:

– In-order: 1 2 3 (4) 5 6 7

– Pre-order: (4) 2 1 3 6 5 7

– Post-order: 1 3 2 5 7 6 (4)

• Now modify the print function above to perform pre-order and post-order traversals.

16.12 Depth-first vs. Breadth-first Search

• In-order, pre-order, and post-order are all examples of depth-first traversals. Rather early in the search we visit
leaf nodes of the tree.

• In contrast, a breadth first search will visit the tree level-by-level starting at the root. It will not visit any nodes
on the next level until all nodes at the current level have been visited.

So for the example tree we drew above:

– Breadth-first: (4) (2 6) (1 3 5 7)

Note that the technically the order of the nodes within each level is not specified for breadth first traversal –
so there are multiple answers. In our sample we traverse the nodes from left to right in each level.

• NOTE: We will write code to perform breadth-first traversal in a later lecture.
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16.13 Beginning our implementation of ds set: The Tree Node Class

• Here is the class definition for nodes in the tree. We will use this for the tree manipulation code we write.

template <class T> class TreeNode {

public:

TreeNode() : left(NULL), right(NULL) {}

TreeNode(const T& init) : value(init), left(NULL), right(NULL) {}

T value;

TreeNode* left;

TreeNode* right;

};

• Note: Sometimes a 3rd pointer — to the parent TreeNode — is added.

16.14 Exercises

1. Write a templated function to find the smallest value stored in a binary search tree whose root node is pointed
to by p.

2. Write a function to count the number of odd numbers stored in a binary tree (not necessarily a binary search
tree) of integers. The function should accept a TreeNode<int> pointer as its sole argument and return an
integer. Hint: think recursively!

16.15 ds set and Binary Search Tree Implementation

• A partial implementation of a set using a binary search tree is in the code attached. We will continue to study
this implementation in tomorrow’s lab & the next lecture.

• The increment and decrement operations for iterators have been omitted from this implementation. Next
lecture we will discuss a couple strategies for adding these operations.

• We will use this as the basis both for understanding an initial selection of tree algorithms and for thinking
about how standard library sets really work.
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16.16 ds set: Class Overview

• There is two auxiliary classes, TreeNode and tree_iterator. All three classes are templated.

• The only member variables of the ds_set class are the root and the size (number of tree nodes).

• The iterator class is declared internally, and is effectively a wrapper on the TreeNode pointers.

– Note that operator* returns a const reference because the keys can’t change.

– The increment and decrement operators are missing (we’ll fill this in next lecture!).

• The main public member functions just call a private (and often recursive) member function (passing the root
node) that does all of the work.

• Because the class stores and manages dynamically allocated memory, a copy constructor, operator=, and
destructor must be provided.

v:

l: r:

Node<T>

v:

l: r:

Node<T>

v:

l: r:

Node<T>

v:

l: r:

Node<T>

v:

l: r:

Node<T>

v:

l: r:

Node<T>

v:

l: r:

Node<T>

size:

root:

ds_set<T> tree_iterator<T>

ptr:

r:l:

v:

Node<T>

20

7

5

10 17

14 252

8

NULL

NULL NULL

NULL NULL NULL NULL

NULL NULL

16.17 Exercises

1. Provide the implementation of the member function ds_set<T>::begin. This is essentially the problem of
finding the node in the tree that stores the smallest value.

2. Write a recursive version of the function find.
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_
;

 
 
i
n
t
 
s
i
z
e
_
;

 
 
/
/
 
P
R
I
V
A
T
E
 
H
E
L
P
E
R
 
F
U
N
C
T
I
O
N
S

 
 
T
r
e
e
N
o
d
e
<
T
>
*
 
 
c
o
p
y
_
t
r
e
e
(
T
r
e
e
N
o
d
e
<
T
>
*
 
o
l
d
_
r
o
o
t
)
 
{
 
 
/
*
 
I
m
p
l
e
m
e
n
t
e
d
 
i
n
 
L
a
b
 
1
1
 
*
/
 
 
}

 
 
v
o
i
d
 
d
e
s
t
r
o
y
_
t
r
e
e
(
T
r
e
e
N
o
d
e
<
T
>
*
 
p
)
 
{
 
 
/
*
 
I
m
p
l
e
m
e
n
t
e
d
 
i
n
 
L
e
c
t
u
r
e
 
1
7
 
*
/
 
 
}

 
 
i
t
e
r
a
t
o
r
 
f
i
n
d
(
c
o
n
s
t
 
T
&
 
k
e
y
_
v
a
l
u
e
,
 
T
r
e
e
N
o
d
e
<
T
>
*
 
p
)
 
{

 
 
 
 
/
/
 
I
m
p
l
e
m
e
n
t
e
d
 
i
n
 
L
e
c
t
u
r
e
 
1
6

 
 
}

 
 
s
t
d
:
:
p
a
i
r
<
i
t
e
r
a
t
o
r
,
b
o
o
l
>
 
i
n
s
e
r
t
(
c
o
n
s
t
 
T
&
 
k
e
y
_
v
a
l
u
e
,
 
T
r
e
e
N
o
d
e
<
T
>
*
&
 
p
)

 
 
{
 
 
/
*
 
D
i
s
c
u
s
s
e
d
 
i
n
 
L
e
c
t
u
r
e
 
1
7
 
*
/
 
 
}
 
 

 
 
i
n
t
 
e
r
a
s
e
(
T
 
c
o
n
s
t
&
 
k
e
y
_
v
a
l
u
e
,
 
T
r
e
e
N
o
d
e
<
T
>
*
 
&
p
)
 
{
 
 
/
*
 
I
m
p
l
e
m
e
n
t
e
d
 
i
n
 
L
e
c
t
u
r
e
 
1
8
 
*
/
 
 
}

 
 
v
o
i
d
 
p
r
i
n
t
_
i
n
_
o
r
d
e
r
(
s
t
d
:
:
o
s
t
r
e
a
m
&
 
o
s
t
r
,
 
c
o
n
s
t
 
T
r
e
e
N
o
d
e
<
T
>
*
 
p
)
 
c
o
n
s
t
 
{

 
 
 
 
/
/
 
D
i
s
c
u
s
s
e
d
 
i
n
 
L
e
c
t
u
r
e
 
1
7

 
 
 
 
i
f
 
(
p
)
 
{

 
 
 
 
 
 
p
r
i
n
t
_
i
n
_
o
r
d
e
r
(
o
s
t
r
,
 
p
-
>
l
e
f
t
)
;

 
 
 
 
 
 
o
s
t
r
 
<
<
 
p
-
>
v
a
l
u
e
 
<
<
 
"
\
n
"
;

 
 
 
 
 
 
p
r
i
n
t
_
i
n
_
o
r
d
e
r
(
o
s
t
r
,
 
p
-
>
r
i
g
h
t
)
;

 
 
 
 
}

 
 
}

 
 
v
o
i
d
 
p
r
i
n
t
_
s
i
d
e
w
a
y
s
_
t
r
e
e
(
s
t
d
:
:
o
s
t
r
e
a
m
&
 
o
s
t
r
,
 
c
o
n
s
t
 
T
r
e
e
N
o
d
e
<
T
>
*
 
p
,
 
i
n
t
 
d
e
p
t
h
)
 
c
o
n
s
t
 
{

 
 
 
 
/
*
 
D
i
s
c
u
s
s
e
d
 
i
n
 
L
e
c
t
u
r
e
 
1
7
 
*
/
 
 
}

}
;

#
e
n
d
i
f
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