
CSCI-1200 Data Structures — Fall 2024
Homework 9 — Spell Correcting Hash Table

In this assignment we will implement and compare the performance of the two strategies for collision
resolution: separate chaining and open addressing. The experiments you will run are based on a simple
application for spell checking and spell correction for an input text of English words. We will hash a large
dictionary of English words and use simple word-frequency data to suggest replacements for ‘misspelled’
words from the text that are not present in the dictionary.

Please carefully read the entire assignment before beginning your implementation.

English Word Dictionary with Frequency Data

To facilitate testing for this assignment, you are
provided with dictionary files in a variety of
sizes between 10,000 to approximately 500,000
words. On the right is a small sample from
the words_with_frequency_10k.txt file, which has
the 10,000 most frequently used words and their
frequencies relative to “the”, the most common word.

...

thanks 0.003950509984

thanksgiving 0.000360839515

that 0.146959412869

thats 0.000433708400

the 1.000000000000

theater 0.001316001550

theaters 0.000409829097

theatre 0.001473699876

...

NOTE: The dictionary data for this assignment was collected and combined from a few sources:

• Linux and MacOS systems have a file /usr/share/dict/words that contains a simple list of words.

• A Kaggle dataset based on the Google Trillion Word Corpus:
https://www.kaggle.com/datasets/rtatman/english-word-frequency

• Data from a one billion word Corpus of Contemporary American English (COCA)
https://www.wordfrequency.info/

NOTE: This is a challenging problem due to contractions, proper names, possessive nouns, verb conjugation,
and slang. Furthermore, this data is scraped from the web with imperfect parsing, and the computed
frequency skews to modern online usage and is thus not a great tool for spell-checking texts from the
Elizabethan era.

A Customizable Hash Function for English Words

The provided code includes a functor class, WordHashFunction, which has a constructor that takes 2 integer
arguments: hash_prefix and hash_suffix. These variables will allow us to control the number of collisions
and observe the impact of these collisions on the performance of our hash table.

If we hash only a subset of the characters in the word, for example
if we hash only the first 5 letters of the word (by specifying that
hash_prefix = 5), we are guaranteed to have collisions in the hash
table. In our 10k dataset, the most common 5 letter prefix is inter –
the top five words when sorted by frequency are shown on the right. Can
you guess the most common prefix of length 3? Or 5? Or other small
integer values? What about the most common suffixes (hash_suffix)?
What is the most common combined prefix and suffix?

maximum bucket contains:

0.01277840 international

0.01140123 internet

0.00519855 interest

0.00256346 interface

0.00233390 interesting

...

Hash Table with Different Collision Resolution Strategies

To compare the two methods for collision resolution, you will complete the HashTable class, which can
be configured for either the separate chaining or open addressing methods of collision resolution. The

https://www.kaggle.com/datasets/rtatman/english-word-frequency
https://www.wordfrequency.info/

constructor for the HashTable class takes in multiple arguments: an integer table_size, an instance of
the WordHashFunction functor class, and booleans use_open_addressing and use_quadratic_probing.
NOTE: quadratic probing is extra credit. We discussed both of the collision methods in lecture. Below is a
diagram illustrating the plausible result from hashing the first three letters of each word:

SEPARATE CHAINING

278

276

275

274

271

272

273

277

279

278

276

275

274

271

272

273

277

OPEN ADDRESSING
(w/ LINEAR PROBING)

w: computer
f: 0.0097

w: the
f: 1.000

w: theatre
f: 0.0015

w: international
f: 0.0128

w: internet
f: 0.0114

w: theater
f: 0.0013

w: theater
f: 0.0013

w: theatre
f: 0.0015

w: the
f: 1.000

w: internet
f: 0.0114f: 0.0128

w: international

f: 0.0097
w: computer

279

With separate chaining, the hash table is a simple array of pointers, and all items that hash to the same
location are stored as a linked list. You may implement this with the STL list class or with a custom
singly-linked node class. For open-addressing the hash table is an array directly storing the data. With
linear probing the collisions are resolved by spilling into the next slots in the array. When nearby hash values
have larger quantities of items mapped to them, the collisions overlap and may have significant impact on
the performance. In this small illustration, the open-addressing example has two non-empty sequences, one
with length 1, and one with length 5.

Measuring the Performance of a Hash Table Configuration

To understand the severity and impact of collisions for different configurations, your program will print out
to std::cerr simple statistics about the hash table. Here are two sample command lines and corresponding
error/information stream output:

./main.out words_with_frequency_10k.txt --hash_prefix 5 --table_size 30000

./main.out words_with_frequency_10k.txt --hash_prefix 5 --table_size 30000 --open_addressing

Hash Table Statistics:

Using Separate Chaining

entries = 10000

buckets = 30000

empty buckets = 24301 (81.00%)

single entry buckets = 3795 (12.65%)

average bucket count = 0.333

maximum bucket count = 31

maximum bucket contains:

0.01277840 international

0.01140123 internet

0.00519855 interest

0.00256346 interface

0.00233390 interesting

0.00226986 internal

0.00221657 interested

0.00169600 interests

0.00156698 interactive

0.00140175 interview

hash table creation time = 0.020 seconds

maximum resident set size (RSS) = 2.490 MB

Hash Table Statistics:

Using Open Addressing

entries = 10000

locations = 30000

empty locations = 20000 (66.67%)

non-empty sequences = 3402

longest non-empty sequence = 186

average non-empty sequence length = 2.939

hash table creation time = 0.011 seconds

maximum resident set size (RSS) = 2.212 MB

2

The maximum resident set size (RSS) is a measurement of the peak total memory usage of your program.

Once the functionality of your HashTable implementation is debugged, you should explore the configuration
options and the impact on running time and memory usage. What does or does not match your expectations?
How could configuration tuning have real-world impact on applications that use hash tables?

NOTE: For this assignment we will not implement automatic table re-sizing. If the table_size requested
on the command line is too small for open addressing, your program should exit with an error.

Application: Spell Checking & Word Replacement Suggestions

We can use this hash table to check the spelling of every word in an input text and flag words that are not
in the dictionary. The “Alice in Wonderland” input file and thousands of other public domain classics are
available from Project Gutenberg (https://www.gutenberg.org/). A portion of the output of a command
line checking such an input file is shown below left. Note that the detailed output of the misspelled words is
sent to std::cout, so we can separate it from the performance data.

./main.out words_with_frequency_200k.txt

--table_size 300000 --check_spelling alice_in_wonderland.txt

Total mispelled words = 89

Unique mispelled words = 47

<snip>

MISPELLED: draggled 1 time(s)

MISPELLED: drawling 3 time(s)

MISPELLED: duchesss 3 time(s)

MISPELLED: eaglet 3 time(s)

MISPELLED: footmans 1 time(s)

MISPELLED: forepaws 1 time(s)

MISPELLED: hearthrug 1 time(s)

MISPELLED: hjckrrh 1 time(s)

MISPELLED: html 1 time(s)

MISPELLED: inkstand 1 time(s)

MISPELLED: jurymen 4 time(s)

MISPELLED: maynt 1 time(s)

MISPELLED: morcar 2 time(s)

MISPELLED: muchness 3 time(s)

MISPELLED: neednt 3 time(s)

MISPELLED: ootiful 4 time(s)

MISPELLED: pattering 3 time(s)

<snip>

MISPELLED: capering 1 time(s)

1 0.0005894878 catering

1 0.0000137156 tapering

1 0.0000015527 papering

MISPELLED: drawling 3 time(s)

1 0.0008673666 drawing

1 0.0000929780 crawling

1 0.0000104411 trawling

1 0.0000039800 brawling

1 0.0000022236 drawline

2 0.0004311697 drawings

2 0.0000387441 rawlings

MISPELLED: pattering 3 time(s)

1 0.0000178061 patterning

1 0.0000109871 battering

1 0.0000028581 mattering

1 0.0000021605 nattering

1 0.0000013379 puttering

1 0.0000013051 spattering

MISPELLED: muchness 3 time(s)

no replacement suggestions

Beyond simply detecting misspelled words, we can make suggestions about replacement words. How can we
efficiently find words that are close in spelling? If we have created the hash table using a hash_prefix and
if we believe the spelling error is at the end of the word (after the prefix), then the correct spelling of the
word will hash to the same value, so we can simply look through all words in that bucket to find the most
similar word. However, this strategy does not work if the word is short or if the spelling error is within the
prefix region. Also this strategy has a downside of creating a hash table with a large number of collisions.

Instead, when the --skip_letters_while_hashing argument is specified, we will proactively place every
dictionary word into multiple buckets, anticipating potential misspellings. Which misspellings? We will loop
over the letters in the word, and one at a time drop or skip each letter, computing the hash of the modified
words. For example, we will also insert the correctly spelled dictionary word “patterning”: at the hash
locations of “atterning” “ptterning” “paterning” “pattrning” “pattening” “pattering” “patternng”
“patternig” and “patternin”.

Furthermore, when we search for replacement options, we can not only search for the misspelled word, but
also one-by-one drop each letter of the misspelled word, hash those options, and search in all of those buckets.
Here is a sample command line we will use to run this algorithm:

./main.out words_with_frequency_200k.txt

--table_size 2000000 --skip_letters_while_hashing

--check_spelling alice_in_wonderland.txt --suggest_replacements

3

https://www.gutenberg.org/

A portion of the output for this command is shown above right. Note that because we are inserting every
word multiple times with the --skip_letters_while_hashing command, we will want to use a much bigger
hash table, especially if we are using the open addressing collision resolution strategy.

When the --suggest_replacements command line argument is included, these candidate words will be
collected and organized first by the edit distance, and secondarily by frequency. The EditDistance function
is in the provided code for this assignment. It calculates how many neighboring letter swaps (e.g., “recieve”→
“receive”), letter replacements (e.g., “seperate”→ “separate”), letter inserts (e.g., “mispelled”→ “misspelled”),
and letter deletes (e.g., “whereever” → “wherever”) are necessary to transform the misspelled word into the
dictionary word.

Assignment Requirements, Hints, and Suggestions

• The provided code for this assignment includes command line argument parsing, input parsing, the
hash function, and edit distance code. You may edit any of the provided code, but your program
should still match the expected input and output formats.

• A significant portion of this homework is about experimentation, observation, data collection, and
writeup. Answer the questions posed in this handout in your README.txt and create and answer
your own questions as your work through the assignment.

• Be sure to make up new test cases to fully test your program. Use the template README.txt to list
your collaborators, your time spent on the assignment, and any notes you want the grader to read.

4

