
CSCI-1200 Data Structures — Fall 2024
Homework 8 — Bounding Volume Hierarchy Trees

In this assignment you will build a templated spatial data structure called a bounding volume hierarchy
(BVH) to store geometric shapes such as disks (circles), triangles, and quadrilaterals. A BVH facilitates
efficient spatial queries for a variety of applications, including: ray tracing in computer graphics, collision
detection for simulation and gaming, motion planning for robotics, nearest neighbor calculation, and image
processing. Other spatial data structures with similar performance to bounding volume hierarchies for these
tasks include quad trees/octrees, k-d trees, and binary space partitions.

Our BVH implementation will share some of the framework of the ds_set implementation we have seen in
lecture and lab. You are encouraged to carefully study that implementation as you work on this homework.

The diagrams below illustrate a ternary two-dimensional BVH that was constructed from an input with 36
triangles on the left. In the middle we show a level 1 BVH tree for this data (the root node is “level 0”), and
on the right we a level 2 BVH tree. Each Node of our tree data structure will always have 3 children nodes
(or no children nodes if it is a leaf node). Note: A general BVH can have any number of children nodes (2
is the most common). Our data structure will only support 2D data, but bounding volume hierarchies can
also be implemented for 3D or higher-dimensional data.

The individual geometric shapes are only stored in the leaf nodes. Every shape is stored in exactly one leaf
node! Every node in the BVH stores the bounding box of (the smallest rectangle that completely surrounds)
all of the data stored in that subtree of the BVH. Here’s another small example dataset using disks:



The algorithm to construct a BVH from a collection of shapes is as follows: 1) split the shapes into 3 groups,
2) compute the bounding box (minimum and maximum coordinates) of each group, and recurse. In the middle
image for each example above we colored the triangles by their group for the first split (red, green, and blue),
and we’ve highlighted the bounding box of each group with a transparent rectangle of the corresponding
color. We will stop splitting and recursing when either the number of shapes in a node is less than or equal
to k (in the examples above, k = --split_threshold is 4) or when we reach our specified limit on the depth
or height of the longest path from root to leaf (in the examples above, the --depth_limit is 2).

The goal of the BVH is to cluster shapes that are spatially close together and to minimize the area (or
volume for 3D data) of the bounding boxes for the shapes in each node. Thus a good method for separating
the shapes into groups is to sort them by one of the axes (whichever dimension is longer) and then split the
shapes into c=3 groups with approximately the same number of shapes. We will sort the shapes by their
centroid / center of mass.

Note that the bounding boxes of the children do not necessarily cover the same area as the bounding box of
the parent node and the boxes for the sibling nodes will often overlap! If we placed the shapes into children
nodes randomly, the calculated bounding boxes would likely have even more overlap – so let’s not do that!

Alternatively, we can construct a BVH incrementally by inserting shapes one at a time. IMPORTANT
NOTE: A BVH constructed incrementally may be negatively impacted by the data ordering and the resultant
tree is much less likely to be balanced. The diagrams below show trees formed incrementally, but limited
to 3 levels beyond the root node. The result depends on the insertion order and the specific algorithm for
incremental insertion (there are multiple good strategies).

As mentioned earlier, one important application of spatial data structures is intersection or collision detection.
A common query in robotics, video games, computer graphics, etc. is “Does this shape touch or intersect
any other shape in the environment?” Since each node of the tree knows the combined bounding box of all
shapes in that subtree, if the query shape does not intersect with the combined bounding box of one of the
children, we know the query shape does not intersect or collide with any shape in that subtree. Without a
spatial data structure, intersection testing for a large group of n shapes will be O(n2). With a good spatial
data structure that running time is instead expected to be O(n log n). A huge optimization!

So how do we know what’s “good” for our spatial data structure? And how do we compare different choices?
In “Incremental BVH construction for ray tracing” (Computers & Graphics 2014) Bittner, Hapala, and
Havran summarize the surface area heuristic (SAH):

cost =
1

Area(scene)

 ∑
I ∈ innernodes

Area(I) +
∑

L ∈ leafnodes

Area(L) ∗ ShapeCount(L)


They calculate the sum of the (surface) area of all inner (non-leaf) nodes and divide by the area of the entire
scene. It is generally better for the inner nodes to have small surface area – which indicates the hierarchy is
small and efficient, and we can quickly navigate to the relevant leaf nodes. They also calculate the sum of

2



the leaf node surface area (again divided by the scene area). The leaf node area is multiplied (penalized) by
the number of shapes at that leaf node. We hope this number is a small constant.

3



Application: Poisson Disk Sampling

To test the efficiency of your BVH, we’ll stress test the code with an application for generating random
samples on a surface that are nicely packed, but separated by a minimum distance (or in our case, just
guaranteed not to overlap). The input will be a large collection (sequence) of geometric shapes that overlap
(see the top row below). Your task is to add these shapes to your BVH one at a time, but after discarding
objects that overlap with one of the previous shapes. The remaining, non-intersecting shapes are shown in the
second row below. We provide the geometry intersection code, so we should get the exact same final result.
(However, floating point comparisons can be unreliable due to rounding error.)

Implementation

Your task for this homework is to implement the templated BVH data structure. We recommend that you
begin by carefully studying the provided code, which includes the implementation of the Disk, Triangle,
and Quad classes. The code also includes key helper functions to generate scalable vector graphics (SVG)
visualizations and evaluate the quality heuristic equation above. We also provide code to compare geometric
shapes and determine if they intersect or collide.

Note: The Disk, Triangle, and Quad classes have a lot of similarity and it would be quite natural (and a good
design) to instead implement them using a common base class and C++ class inheritance. This would allow
us also to mix the different shapes within a single example. We will cover inheritance in C++ later in the
term. But for this assignment we are choosing instead an implementation with templated classes.

You will need to create a BVH in two ways, given all of the data at once in a vector, and incrementally,
by inserting data one shape at a time. You will also need to implement the iterator increment function:
operator++. Once you have the basics working, clean up your class and test both pre- and post- increment
and decrement operations. As this is a class with dynamically-allocated memory, you will also need to
implement, test, and debug the copy constructor, assignment operator, and destructor. The homework

4



server will compile and run your bvh.h file with the instructor’s solution to test your implementation of
these functions. It will test your code with Dr. Memory and your program must be memory error and
memory leak free for full credit.

Command Line Arguments & Detailed Output

Study the main.cpp file and the available command line options. The examples in this handout were produced
with the following commands. The zip file contains many other input examples with a variety of sizes of
data to help you test the performance of your data structure.

./bvh.out -i 36.triangles -o 36_triangles.html

./bvh.out -i 36.triangles -o 36_triangles_1.html --depth_limit 1 --visualize

./bvh.out -i 36.triangles -o 36_triangles_2.html --depth_limit 2 --visualize

./bvh.out -i 36.disks -o 36_disks.html

./bvh.out -i 36.disks -o 36_disks_1.html --depth_limit 1 --visualize

./bvh.out -i 36.disks -o 36_disks_2.html --depth_limit 2 --visualize

./bvh.out -i 36.disks -o 36_disks_incremental_3.html --depth_limit 3 --incremental --visualize

./bvh.out -i 36.triangles -o 36_triangles_incremental_3.html --depth_limit 3 --incremental --visualize

./bvh.out -i 36.quads -o 36_quads_incremental_3.html --depth_limit 3 --incremental --visualize

./bvh.out -i overlap_1000.disks -o overlap_1000_disks.html

./bvh.out -i overlap_1000.triangles -o overlap_1000_triangles.html

./bvh.out -i overlap_1000.quads -o overlap_1000_quads.html

./bvh.out -i overlap_1000.disks -o discard_overlap_1000_disks.html --depth_limit 8 --incremental --discard_overlap

./bvh.out -i overlap_1000.triangles -o discard_overlap_1000_triangles.html --depth_limit 8 --incremental --discard_overlap

./bvh.out -i overlap_1000.quads -o discard_overlap_1000_quads.html --depth_limit 8 --incremental --discard_overlap

Each of these commands produce a Scalable Vector Graphics (SVG) file stored as a .html file. You should be
able to open this file locally in a standard web browser (e.g., Chrome, Firefox, etc.) We will be autograding
by looking at the STDOUT from each run. For example, this command:

./bvh.out -i 36.triangles -o 36_triangles_2.html --depth_limit 2 --visualize --print_tree > 36_triangles_2_stdout.txt

Will produce the output below:

inner area=0.929 [< 45.7 12.9> <992.3 993.9>]

inner area=0.319 [< 68.6 12.9> <969.5 367.5>]

leaf area=0.045 [< 68.6 27.3> <212.6 337.1>] elements: [< 68.6 224.1> <116.3 277.0>] [< 77.6 115.0> <145.0 186.5>] [< 90.5 27.3> <192.7 120.0>] [<121.1 245.2> <212.6 337.1>]

leaf area=0.109 [<236.4 12.9> <567.0 343.1>] elements: [<236.4 174.6> <327.6 273.9>] [<296.7 12.9> <410.2 116.7>] [<416.0 94.6> <500.0 168.0>] [<377.0 159.6> <567.0 343.1>]

leaf area=0.117 [<558.9 83.6> <969.5 367.5>] elements: [<558.9 197.8> <663.7 301.1>] [<715.1 83.6> <857.0 234.4>] [<821.4 172.3> <906.6 268.9>] [<870.5 276.6> <969.5 367.5>]

inner area=0.367 [< 76.0 298.5> <984.8 701.9>]

leaf area=0.131 [< 76.0 298.5> <401.2 701.9>] elements: [< 76.0 355.0> <255.2 532.0>] [<158.4 511.3> <217.8 570.9>] [<215.7 598.1> <319.1 701.9>] [<310.3 298.5> <401.2 389.6>]

leaf area=0.097 [<431.3 317.2> <705.4 672.5>] elements: [<431.3 508.7> <481.0 561.9>] [<507.8 317.2> <598.9 398.9>] [<506.4 409.1> <642.6 527.1>] [<546.6 496.6> <705.4 672.5>]

leaf area=0.087 [<624.4 360.4> <984.8 600.8>] elements: [<624.4 466.0> <682.7 520.1>] [<637.6 360.4> <758.3 481.6>] [<824.3 439.4> <914.6 524.8>] [<898.8 502.0> <984.8 600.8>]

inner area=0.377 [< 45.7 595.5> <992.3 993.9>]

leaf area=0.128 [< 45.7 631.8> <399.2 993.9>] elements: [< 45.7 746.9> <124.2 818.8>] [< 90.4 631.8> <238.8 784.4>] [<163.1 890.9> <233.1 960.7>] [<335.0 928.7> <399.2 993.9>]

leaf area=0.157 [<313.5 595.5> <721.0 979.7>] elements: [<313.5 697.1> <453.8 854.2>] [<439.5 818.8> <599.6 979.7>] [<491.6 595.5> <642.2 758.4>] [<595.8 752.0> <721.0 871.6>]

leaf area=0.079 [<704.9 673.3> <992.3 948.2>] elements: [<704.9 691.3> <775.0 761.2>] [<810.6 673.3> <960.0 845.3>] [<887.4 889.0> <939.2 948.2>] [<931.2 787.1> <992.3 857.6>]

node count: 13

max depth: 2

inner node area: 1.992

leaf node area: 3.797

Extra Credit: Tree Balancing & Shape Erase

For extra credit you can explore and evaluate alternate methods of constructing and/or incrementally
inserting data to a BVH. Does one method consistently out-perform another? Either measured timing
results or through the surface area heuristic?

We are not requiring the implementation of erase for your BVH. Why not? Discuss the implications of
implementing and using erase on a BVH. How does it compare to erase on a standard binary search tree?
For extra credit you can design, implement, test, and evaluate the performance of the erase operation on a
BVH.

Homework Submission

Use good coding style and detailed comments when you design and implement your program. You must do
this assignment on your own, as described in the “Collaboration Policy & Academic Integrity” handout. If
you did discuss this assignment, problem solving techniques, or error messages, etc. with anyone, please list
their names in your README.txt file.

5

http://www.cs.rpi.edu/academics/courses/fall24/csci1200/academic_integrity.php

