
CSCI-1200 Data Structures — Fall 2024
Homework 2 — Swimming Classes

In this assignment you will parse and compute statistics from the Summer Olympics swimming competitions.
First, let’s have a crash course in swimming. There are four basic strokes: freestyle, backstroke, breaststroke,
and butterfly. A standard Olympic pool is 50m in length and can accommodate 8 lanes, with one swimmer
per lane. There are currently 35 different events in the Olympic swimming meet, 18 for women and 18 for
men, and 1 mixed event with both women and men.

https://en.wikipedia.org/wiki/Swimming_at_the_Summer_Olympics

The different competition events are different distances and have different prescribed strokes. Some of the
events are “relay” races, that bring together four swimmers from the same country and they each swim one
quarter of the total distance for that race. Some of the events are “medley” events that require the swimmer
(or team of four swimmers) to use each stroke for a specified quarter of the race.

Because more than 8 people or teams will compete in an event, the event is broken into two or three stages:
“heats”, “semifinals, and “finals”. Swimmers must achieve one of the top scores in their “heat” or “semifinal”
(depending on the number of participants) to progress to the next round. The medals are awarded to the
top performers in the final round of the event (results from earlier rounds do not count).

Interesting Details about Swimming Competition Statistics

Even though modern technology allows us to measure time differences extremely accurately, international
swimming results are only recorded to 1/100th of a second. Why? Because elite swimmers at their top speed
can cover almost 3 cm in 1/100th of a second. And 3 cm is the allowable construction tolerance for the
Olympic-compliant pools. In other words, it is not worth measuring more accurately because differences in
the length of two different lanes of the pool would potentially decide the outcome of the race. Therefore, ties
are not unusual in swimming competition.

https://deadspin.com/this-is-why-there-are-so-many-ties-in-swimming-1785234795/

With access to data and visualization tools, analysis of the lap split times of competitors at the 2016 Rio
Olympics (and other international competitions) has led to speculation that some pools have a subtle but
measurable overall circular current that is pushing against the swimmers in the low numbered lanes as they
swim away from the starting blocks (slowing them down) and helping them along as they return to the
starting blocks (speeding them up). In events with an even number of laps, the effect of this current is
probably canceled out. But for the shortest race with a single length of the pool (no return), this could be
a noticeable advantage or disadvantage (depending on the swimmer’s lane assignment).

https://swimswam.com/problem-rio-pool/

Sample Data

Here’s a small portion of the data for the semifinals and final of the Women’s 200m Freestyle at the 2016
Rio Olympics. Each event begins with a keyword “EVENT” followed the the full title of the event.

EVENT

2016 Olympics Women's 200m Freestyle

SEMI 1 3 Duo SHEN CHN 27.00 56.81 1:26.36 1:56.03

SEMI 2 3 Federica PELLEGRINI ITA 26.98 56.25 1:25.76 1:55.42

SEMI 2 4 Katie LEDECKY USA 27.20 56.21 1:25.78 1:54.81

SEMI 2 5 Sarah SJOSTROM SWE 27.07 56.23 1:25.65 1:54.65

FINAL 3 Federica PELLEGRINI ITA 27.09 56.45 1:25.84 1:55.18

FINAL 4 Sarah SJOSTROM SWE 26.84 55.86 1:24.95 1:54.08

FINAL 5 Katie LEDECKY USA 27.00 55.43 1:24.55 1:53.73

FINAL 6 Duo SHEN CHN 27.07 55.90 1:25.67 1:55.25

The input for this homework comes from https://olympics.com/ and https://www.worldaquatics.com/

but has been cleaned up and standardized to simplify your work parsing data.

https://en.wikipedia.org/wiki/Swimming_at_the_Summer_Olympics
https://deadspin.com/this-is-why-there-are-so-many-ties-in-swimming-1785234795/
https://swimswam.com/problem-rio-pool/
https://olympics.com/
https://www.worldaquatics.com/


Each participant result from the event begins with a keyword indicating which round of competition it is
from. The heat and semifinal results have an extra integer column indicating which semifinal or which
heat this result came from. Next is the lane assignment. It is generally accepted that the middle lanes are
advantageous, and thus are awarded to the highest finishers from the previous rounds.

Each swimmer is identified by a first and last name. Note: Swimmers with multiple first names or multiple
last names have been combined with an underscore. Next is the three letter country code. Finally, this
dataset includes the intermediate timing results for every 50m length of the pool. In the example above,
there are thus four times for each swimmer in the 200m event distance. The format is minutes + seconds to
the nearest 1/100th (m:ss.ss).

The team relay events are formatted similarly, but instead of a 2 part first and last name, there is just one
string for the country. Multi-word country names are combined with the underscore character. And on a
line below the team’s timing results are the names of the four swimmers (in order) who participated in that
race.

File I/O and Command Line Arguments

Your task is to write a program to read, manipulate, and output this data. Your program will accept 3 or
4 command-line arguments. The first is the name of the input file, the second is the name of the output
file. The third controls what type of data table should be output. And the fourth argument is optional,
indicating that the basic table requested should be expanded with more information, for extra credit.

For example, here are valid command lines to your program:

./swimming_statistics.out sample_dataset.txt sample_output_events.txt events

./swimming_statistics.out sample_dataset.txt sample_output_events_medals.txt events medals

./swimming_statistics.out sample_dataset.txt sample_output_participants.txt participants

./swimming_statistics.out sample_dataset.txt sample_output_participants_medals.txt participants medals

./swimming_statistics.out sample_dataset.txt sample_output_custom.txt custom

Statistics Collected and Output

Depending on the third command line argument, your program will output one of three different types of
tables. First, let’s look at the “events” tables created from the sample_dataset.txt input file. NOTE:
Only five rows of data for each table are shown below. See the complete output on the course website.

2016 Olympics Women's 200m Freestyle 50m 100m 150m 200m TOTAL

------------------------------------------------------------------------------------

Katie LEDECKY 27.00 28.43 29.12 29.18 1:53.73

Sarah SJOSTROM 26.84 29.02 29.09 29.13 1:54.08

Sarah SJOSTROM 27.07 29.16 29.42 29.00 1:54.65

Katie LEDECKY 27.20 29.01 29.57 29.03 1:54.81

Emma McKEON 26.64 28.73 29.80 29.75 1:54.92

<snip>

2016 Olympics Women's 400m Freestyle 50m 100m 150m 200m 250m 300m 350m 400m TOTAL

------------------------------------------------------------------------------------------------------------------------

Katie LEDECKY 27.73 29.32 29.94 30.12 30.30 30.21 29.92 28.92 3:56.46

Katie LEDECKY 28.24 29.96 30.26 30.48 29.81 30.36 29.99 29.61 3:58.71

Jazz CARLIN 28.49 30.37 30.39 30.83 29.99 30.61 30.48 30.07 4:01.23

Leah SMITH 28.42 30.47 30.70 30.93 30.58 30.60 30.29 29.93 4:01.92

Boglarka KAPAS 28.88 30.79 30.28 30.73 30.69 30.95 30.39 29.66 4:02.37

<snip>

For each event in the input file we create a short table with the lap splits and the total results. You’ll
calculate the splits as the difference in between intermediate timing values in the input file. This table allows
a coach to study how their swimmer’s pace is varying over the course of the race and compare it to the
other successful racers. The rows of this table are are sorted by total completion time. If there is a tie in
total time, the swimmers should be sorted by last name, then first name. Note that there will be duplicate

2



names in this table, and if the swimmer had the same time in multiple rounds, this data ordered Final,
then Semi-Final, then Heat. If the input file contains multiple events, the tables in the output file should be
ordered alphabetically by the full event name.

For extra credit, in the “medals” version of the “events” table (see sample output on the course webpage),
the gold, silver, and bronze medalists are labeled with an extra column on the right. We also label the non
final round results next to the swimmer name.

COUNTRY PARTICIPANT HEATS SEMIS FINALS

--------------------------------------------------

AUS Jessica ASHWOOD 1 0 1

AUS Bronte BARRATT 0 1 1

<snip>

SRB Katarina SIMONOVIC 1 0 0

SWE Michelle COLEMAN 0 1 1

SWE Sarah SJOSTROM 0 1 1

USA Missy FRANKLIN 0 1 0

USA Katie LEDECKY 1 1 2

USA Leah SMITH 1 0 1

VEN Andreina PINTO 1 0 0

VIE Vien NGUYEN_THI_ANH 1 0 0

Next we discuss the “participants” table shown on the
left, which contains all swimmers for all events in the
input file. The swimmers are sorted first by country
abbreviation, then by last name, then first name. The
remaining columns in this table store counts of the
different rounds this swimmer participated in. For extra
credit, the “medals” version of “participants” table
adds three columns to count the swimmers’ medals.
Additionally, to make the table more legible we replace
the zero digits with a blank space.

The third and final part of the output (when “custom” is specified on the command line) is a chance for you
to be creative. You will collect and output some other statistic from this data – it should be more than a
trivial variation of one of the previous tables. You could compare relative performances in the four different
swimming strokes, you could study the outgoing and incoming split time differential for the different lanes,
or you could create a fantasy swimming league mixing up the countries to which each swimmer is assigned.

Write a concise description (< 100 words) of your new statistic in your README.txt along with any other
notes for the grader. Be sure to tell the grader which dataset best demonstrates your new statistic – or create
your own dataset. Include your program’s output for that test case with your submission.

Program Requirements & Submission Details & Useful Code

Your program should involve the definition of at least one class that has its own .h and .cpp files, named
appropriately. As with Homework 1, you should also make good use of the STL string and STL vector

classes. You should not need or use pointers, the new operator, or recursion for this homework.

You should aim to match the sample output tables exactly. Hint: use the diff command from your terminal
to check your output vs. the sample output. NOTE: All column widths are fixed, except the width of
the column with the athlete’s name is based on the longest athlete name in the specific input dataset. To
control the formatting of your tables, you’ll want to read up on the various iomanipulators: std::setw(int),
std::setprecision(int), and std::fixed, using #include <iomanip>. And don’t forget about the STL
sort function that can be used to order the contents of a vector. We recommend you use the >> input
stream operator to fully parse the input file. You do not need the getline or eof functions. See also “Helpful
C++ Programming Information”.

Be sure to read the “Good Programming Practices” as you put the finishing touches on your solution. Use
the provided template README.txt file for notes you want the grader to read. You must do this assignment on
your own, as described in the “Collaboration Policy & Academic Integrity” If you did discuss the assignment,
problem solving techniques, or error messages, etc. with anyone, list their names in your README.txt file.

The Submitty autograder for each homework will be posted by Monday afternoon. This homework will
include an Early Submission Incentive. If you upload to Submitty before Wednesday @ 11:59pm and earn a
specified number of points on the autograding, you’ll earn a 1 day extension for that assignment. This means
your effective deadline for that assignment will be Friday night @ 11:59pm.

3

http://www.cs.rpi.edu/academics/courses/fall24/csci1200/programming_information.php
http://www.cs.rpi.edu/academics/courses/fall24/csci1200/programming_information.php
http://www.cs.rpi.edu/academics/courses/fall24/csci1200/good_programming.php
http://www.cs.rpi.edu/academics/courses/fall24/csci1200/academic_integrity.php

