
Good Programming Practices
Andrew Showers, Salles Viana

ALAC

Overview
● Code Refactoring

● Variable Naming and Access

● Tips for Readability

● Commenting and Documentation

● Black-Box Testing

● Const/Reference

Disclaimer
A style guide is about consistency and improving readability of code.

Know when to be inconsistent, guidelines will serve as a rule of thumb and not an
absolute. Ask yourself if the rules being applied make the code more readable.

Code Refactoring
● Rewriting code for clarity, not bug fixing. Similar to writing paper drafts

● Rewrites may include:
○ Documentation / Comments
○ Change in Flow
○ Variable Naming Conventions
○ Creation of Functions / Classes

■ Simplification
■ Eliminating Duplicate Code
■ Re-usable

Variable Naming Conventions
● camelCase

 ballRadius

● Underscore
 between words -> ball_radius

 at start (private/protected) -> _speed

● Uppercase for constants
 GRAVITY

● Capitalize first word for classes
 Person()

Variable Access
● Avoid global variables unless it drastically simplifies code

○ Use your intuition. If the variable is used throughout the entire program, global is probably fine

● Avoid public variables for classes. Enforce the idea of encapsulation
○ Instead of public variables, create getters and setters

Avoid Redundant Labeling

VS

Eliminate redundancy in order to create more readable code

Avoid Deep Nesting

VS

Avoid Explicit Comparisons (when possible)
https://docs.python.org/3/library/stdtypes.html#truth-value-testing

VS

https://docs.python.org/3/library/stdtypes.html#truth-value-testing

Avoid Long Lines
● Too many operations per line is confusing to read

VS

One Statement per Line

VS

Strive for Simplicity
Code should be explicit and straightforward

VS

Strive for Simplicity (cont.)
Use list comprehensions, filter(), and map() where applicable

VS

VS

Strive for Simplicity (cont.)

Use enumerate to keep track of index and element values

VS

Commenting
● Explain logic in a clear and understandable manner

○ Avoid jargon when possible
○ Aim for explanation to be understood by non-programmers

● Spacing and logical grouping
○ Parsing data
○ Solving a particular subproblem
○ Displaying results

● Keep them up to date
○ Outdated comments lead to more confusion

Commenting (cont.)
● Avoiding obvious comments

● When possible, rewrite the code so no comments are necessary

VS

Commenting (cont.)
“At the beginning of every routine, it is helpful to provide standard, boilerplate
comments, indicating the routines purpose, assumptions, and limitations. A
boilerplate comment should be a brief introduction to understand why the routine
exists and what it can do."
https://msdn.microsoft.com/en-us/library/aa260844(v=vs.60).aspx

https://msdn.microsoft.com/en-us/library/aa260844(v=vs.60).aspx

Examples of function boilerplate:

Documentation
● Sphinx

○ http://www.sphinx-doc.org/en/stable/index.html
○ http://www.sphinx-doc.org/en/stable/ext/example_google.html

● EpyDoc
○ http://epydoc.sourceforge.net

● PythonDoc
○ http://effbot.org/zone/pythondoc.htm#syntax

http://www.sphinx-doc.org/en/stable/index.html
http://www.sphinx-doc.org/en/stable/ext/example_google.html
http://epydoc.sourceforge.net
http://effbot.org/zone/pythondoc.htm#syntax

Black-Box Testing
● Given a function, you know what the output should be for given inputs

○ Select cases which cover all typically expected behavior
○ Software can verify function still works by running these tests

● DocTest
○ https://en.wikipedia.org/wiki/Doctest

https://en.wikipedia.org/wiki/Doctest

Avoid Convoluted Tricks
Just because you can doesn't mean you should

Examples:

● change how objects are created and instantiated
● change how the Python interpreter imports modules
● embedding C routines in Python

Exceptions exist, ask yourself if it is absolutely necessary (such as performance)

Some common mistakes seen in DS homeworks
Some of these problems may also apply to CS-1

Not using local variables properly
● Even local variables may be “too global”
● Try to avoid declaring variables too soon

What is the problem with the following example?

● Common cause: Ctrl-C + Ctrl-V

Not using local variables properly

Ok now?

Another common mistake...

Another common mistake...

Const/reference
Ok now?

Const/reference
getName() → always returns a COPY of name…

Const/reference
Ok now?

Const/reference
Where does the compilation error happen? What if getName() was not const?

Const/reference
Const function:
- Can’t modify object.
- → can be applied to a const object

Reference: does not copy
the returned value

Const returned value: you
can’t modify the returned
reference.

Const/reference This function should
be in the .cpp file !

Const/reference

[i]

Code reuse
Avoid having duplicate code

● More code → more bugs (usually)
● More code → more things to fix
● More code → more time to implement
● More code → lower grade!

Matrix a(5,2);
Matrix b(3,3);

a = b; //the operator will call a.copy(b)

What is the problem here?

Typo: missing a * →
will have to fix here
AND in the
constructor...

● Smaller code
● Easier to read

Now we only
have to fix the
typo here...

References
PEP 8 -- Style Guide for Python Code:
https://www.python.org/dev/peps/pep-0008/

The Best of the Best Practices (BOBP) Guide for Python:
https://gist.github.com/sloria/7001839

Coding Techniques and Programming Practices:
https://msdn.microsoft.com/en-us/library/aa260844(v=vs.60).aspx

Code Style http://docs.python-guide.org/en/latest/writing/style/

https://www.python.org/dev/peps/pep-0008/
https://gist.github.com/sloria/7001839
https://msdn.microsoft.com/en-us/library/aa260844(v=vs.60).aspx
http://docs.python-guide.org/en/latest/writing/style/

