
CSCI-1200 Data Structures — Fall 2020
Lab 4 — Vec Implementation

Checkpoint 1 estimate: 30-45 minutes

Like last week, every member of your lab group should have received an email this morning from the
instructor. The email contains the code for Checkpoint 1. Each member of your lab study group received a
different fragment of code with a food group theme.

IMPORTANT: Do not share the code fragment with your teammates yet!

For PART ONE of this checkpoint, each team member should draw the memory diagram that is
produced by that short fragment of code. Review the memory diagramming examples from Lecture 4
& 5 and follow the same diagramming conventions.

Next, for PART TWO, share this diagram (but not the code!) with your teammates. If you’ve drawn the
diagram on paper, take a photo with your cell phone camera. If you’ve used a digital painting/drawing tool,
save the diagram as a and image or .pdf. Share the diagram with all of your teammates using email, WebEx
screensharing, or another method of document sharing.

Now the team should work together as a group to REVERSE ENGINEER and deduce a fragment of
code that will produce each diagram.

After the group has finished discussing the diagram and written out the deduced code fragment, the student
who prepared the diagram can share the original code fragment and the group should compare the original and
reverse-engineered code fragments and discuss any differences and evaluate the accuracy of the diagramming
and reverse-engineering process.

To complete this checkpoint, after your group has discussed each of the diagrams (or after 45 minutes
of lab time has passed, whichever is first), present both your individual drawings and the groups work to a
TA or mentor.

Checkpoints 2 and 3 explore our implementation from lecture of the STL vector class. Please download:

http://www.cs.rpi.edu/academics/courses/fall20/csci1200/labs/04_vec_implementation/vec.h

http://www.cs.rpi.edu/academics/courses/fall20/csci1200/labs/04_vec_implementation/test_vec.cpp

Checkpoint 2 estimate: 10-25 minutes

Write a templated non-member function named remove_matching_elements that takes in two arguments,
a vector of type Vec<T> and an element of type T, and returns the number of elements that matched the
argument and were successfully removed from the vector. The order of the other elements should stay
the same. For example, if v, a Vec<int> object contains 6 elements: 11 22 33 11 55 22 and you call
remove_matching_elements(v,11), that call should return 2, and v should now contain: 22 33 55 22.

Add several test cases to test_vec.cpp to show that the function works as expected. Think about the
efficiency of your solution relative to the size of the vector, and the number of occurrences of the input
element in the vector. Make sure that the function is not unnecessarily wasteful of CPU or memory resources.

http://www.cs.rpi.edu/academics/courses/fall20/csci1200/labs/04_vec_implementation/vec.h
http://www.cs.rpi.edu/academics/courses/fall20/csci1200/labs/04_vec_implementation/test_vec.cpp


NOTE: Your implementation should not use iterators or the erase function that is part STL vector

implementation. We will cover that function in lecture soon. Your implementation should not create a
new Vec object or use an array or STL vector as a helper structure.

To complete this checkpoint, show a TA your debugged solution for remove_matching_elements and
be prepared to discuss the efficiency of the function.

Checkpoint 3 estimate: 20-40 minutes

Add a print member function to Vec to aid in debugging. (Note, neither remove_matching_elements nor
print are not part of the STL standard for vector). You should print the current information stored in the
variables m_alloc, m_size, and m_data. Use the print function to confirm your remove_matching_elements
function is debugged. Also, write a test case that calls push_back many, many times (hint, use a for loop!)
and observe how infrequently re-allocation of the m_data array is necessary.

To verify your code does not contain memory errors or memory leaks, use Valgrind and/or Dr. Memory on
your local machine – see instructions on the course webpage: Memory Debugging. Also, submit your code
to the homework server (in the practice space for lab 4), which is configured to run the memory debuggers
for this exercise. To verify that you understand the output from Valgrind and/or Dr. Memory, temporarily
add a simple bug into your implementation to cause a memory error or memory leak.

To complete this checkpoint, show a TA your tested & debugged program. Be prepared to demo and
discuss the Valgrind and/or Dr. Memory output: with and without memory errors and memory leaks AND
on your local machine and on the homework server.

2

http://www.cs.rpi.edu/academics/courses/fall20/csci1200/memory_debugging.php

