CSCI-1200 Data Structures — Fall 2019
Lecture 16 — Trees, Part 1

Review from Lecture 15

e Maps containing more complicated values. Example: index mapping words to the text line numbers on which
they appear.

Maps whose keys are class objects. Example: maintaining student records.

Summary discussion of when to use maps.

Lists vs. Graphs vs. Trees

e Intro to Binary Trees, Binary Search Trees, & Balanced Trees

Today’s Lecture

Finish Intro to Binary Trees, Binary Search Trees, & Balanced Trees

STL set container class (like STL map, but without the pairs!)

Implementation of ds_set class using binary search trees

In-order, pre-order, and post-order traversal

Breadth-first and depth-first tree search
16.1 Standard Library Sets

e STL sets are ordered containers storing unique “keys”. An ordering relation on the keys, which defaults to
operator<, is necessary. Because STL sets are ordered, they are technically not traditional mathematical sets.

e Sets are like maps except they have only keys, there are no associated values. Like maps, the keys are constant.
This means you can’t change a key while it is in the set. You must remove it, change it, and then reinsert it.

e Access to items in sets is extremely fast! O(log n), just like maps.

e Like other containers, sets have the usual constructors as well as the size member function.

16.2 Set iterators

e Set iterators, similar to map iterators, are bidirectional: they allow you to step forward (++) and backward
(--) through the set. Sets provide begin() and end() iterators to delimit the bounds of the set.

e Set iterators refer to const keys (as opposed to the pairs referred to by map iterators). For example, the
following code outputs all strings in the set words:

for (set<string>::iterator p = words.begin(); p!= words.end(); ++p)
cout << xp << endl;

16.3 Set insert

e There are two different versions of the insert member function. The first version inserts the entry into the
set and returns a pair. The first component of the returned pair refers to the location in the set containing the
entry. The second component is true if the entry wasn’t already in the set and therefore was inserted. It is
false otherwise. The second version also inserts the key if it is not already there. The iterator pos is a “hint”
as to where to put it. This makes the insert faster if the hint is good.

pair<iterator,bool> set<Key>::insert(const Key& entry);
iterator set<Key>::insert(iterator pos, const Key& entry);

16.4 Set erase

e There are three versions of erase. The first erase returns the number of entries removed (either 0 or 1). The
second and third erase functions are just like the corresponding erase functions for maps. Note that the erase
functions do not return iterators. This is different from the vector and list erase functions.

size_type set<Key>::erase(const Key& x);
void set<Key>::erase(iterator p);
void set<Key>::erase(iterator first, iterator last);



16.5 Set find

e The find function returns the end iterator if the key is not in the set:

const_iterator set<Key>::find(const Key& x) const;

16.6 Beginning our implementation of ds_set: The Tree Node Class
e Here is the class definition for nodes in the tree. We will use this for the tree manipulation code we write.

template <class T> class TreeNode {
public:
TreeNode() : left(NULL), right(NULL) {}
TreeNode(const T& init) : value(init), left(NULL), right(NULL) {}
T value;
TreeNode* left;
TreeNode* right;

1
e Note: Sometimes a 3rd pointer — to the parent TreeNode — is added.

16.7 Exercises

1. Write a templated function to find the smallest value stored in a binary search tree whose root node is pointed
to by p.

2. Write a function to count the number of odd numbers stored in a binary tree (not necessarily a binary search
tree) of integers. The function should accept a TreeNode<int> pointer as its sole argument and return an
integer. Hint: think recursively!

16.8 ds_set and Binary Search Tree Implementation

e A partial implementation of a set using a binary search tree is in the code attached. We will continue to study
this implementation in tomorrow’s lab & the next lecture.

e The increment and decrement operations for iterators have been omitted from this implementation. Next
lecture we will discuss a couple strategies for adding these operations.

e We will use this as the basis both for understanding an initial selection of tree algorithms and for thinking
about how standard library sets really work.



16.9 ds_set: Class Overview
e There is two auxiliary classes, TreeNode and tree_iterator. All three classes are templated.
e The only member variables of the ds_set class are the root and the size (number of tree nodes).

e The iterator class is declared internally, and is effectively a wrapper on the TreeNode pointers.
— Note that operator* returns a const reference because the keys can’t change.
— The increment and decrement operators are missing (we’ll fill this in next lecture!).

e The main public member functions just call a private (and often recursive) member function (passing the root
node) that does all of the work.

e Because the class stores and manages dynamically allocated memory, a copy constructor, operator=, and
destructor must be provided.

ds_set<T>

tree_iterator<T>
ptr:

Node<T>

root:
size: 8
Node<T>

Node<T> Node<T>

v:o 2 v: 25

I:

|: NULL

I NULL NULL 1. NULL

Node<T>
v: 10 ve 17

Node<T>

I: NULL r: NULL I: NULL r: NULL




16.10 Exercises

1. Provide the implementation of the member function ds_set<T>::begin. This is essentially the problem of
finding the node in the tree that stores the smallest value.

2. Write a recursive version of the function find.

16.11 In-order, Pre-Order, Post-Order Traversal

e One of the fundamental tree operations is “traversing” the nodes in the tree and doing something at each node.
The “doing something”, which is often just printing, is referred to generically as “visiting” the node.

e There are three general orders in which binary trees are traversed: pre-order, in-order and post-order.

e In order to explain these, let’s first draw an “exactly balanced” binary search tree with the elements 1-7:

— What is the in-order traversal of this tree? Hint: it is monotonically increasing, which is always true for
an in-order traversal of a binary search tree!

— What is the post-order traversal of this tree? Hint, it ends with “4” and the 3rd element printed is “2”.

— What is the pre-order traversal of this tree? Hint, the last element is the same as the last element of the
in-order traversal (but that is not true in general! why not?)



e Now let’s write code to print out the elements in a binary tree in each of these three orders. These functions
are easy to write recursively, and the code for the three functions looks amazingly similar. Here’s the code for
an in-order traversal to print the contents of a tree:

void print_in_order (ostream& ostr, const TreeNode<T>* p) {
if (p) {
print_in_order(ostr, p->left);
ostr << p->value << "\n";
print_in_order(ostr, p->right);

}
}

How would you modify this code to perform pre-order and post-order traversals?

16.12 Depth-first vs. Breadth-first Search

e We should also discuss two other important tree traversal terms related to problem solving and searching.

— In a depth-first search, we greedily follow links down into the tree, and don’t backtrack until we have hit
a leaf.

When we hit a leaf we step back out, but only to the last decision point and then proceed to the next leaf.

This search method will quickly investigate leaf nodes, but if it has made “incorrect” branch decision early
in the search, it will take a long time to work back to that point and go down the “right” branch.

— In a breadth-first search, the nodes are visited with priority based on their distance from the root, with
nodes closer to the root visited first.

In other words, we visit the nodes by level, first the root (level 0), then all children of the root (level 1),
then all nodes 2 links from the root (level 2), etc.

If there are multiple solution nodes, this search method will find the solution node with the shortest path
to the root node.

However, the breadth-first search method is memory-intensive, because the implementation must store all
nodes at the current level — and the worst case number of nodes on each level doubles as we progress down
the tree!

e Both depth-first and breadth-first will eventually visit all elements in the tree.

e Note: The ordering of elements visited by depth-first and breadth-first is not fully specified.

— In-order, pre-order, and post-order are all examples of depth-first tree traversals.

— What is a breadth-first traversal of the elements in our sample binary search tree above? (We’ll write and
discuss code for breadth-first traversal next lecture!)



JTpUS#
{ #(T300I1<-STY3} == ~300I°PTO) uUIN3I®X } 3ISUOD (PTO %®<I>ISS SP 3Isuod)==103eI19dO TOOQ
H { {792ZTs uaniax } 3suod ()°9zTS 3JuT
{103©19]3T <I>103eI93T o913 FopadAa

{ /x (LT ©In309T UT passnosId x/
{

} asuod (yadep 3uUT ‘d 4<I>OPONSSIL ISUOD ‘I1SO BWESIISO: :p3lS)o21]1 sAemspTs qutad proa

{ {STY3lx uaniax
{ {
£ (ybTta<-d ‘x13s0)Iepio uTl utad !T9ZTIS PIO = ~©ZIS
fyu\, >> enea<-d >> 13S0 {(T3001°p10) 9213 AdOD<-STYl = ~ 3001
£ (139T<-d ‘13s0)a9pao uT 3utad {(T300x1) 9913 AOoI3SOP<-STUL
} o(d) 3IT } (STU3l =i PTO3) IT
} (PTO ®<1>319s” sp 3suod)=1o03exado 338S™ Sp

9T ©2aIn3097T UT passnosITd \\

} 3suod (d x<I>OPONSSIL ISUOD ‘IJSO BWESIJSO: :P3S)ISPIO0 uT Jutad proa { !TTIAN = ~ 3001 ! (T300x)e91]1 Aoxlseop<-STYl } ()3I9s sp.
{ /x (LT ©In3oeT Uur pejusweTdwl x/ } (d3 x<I>SPON®®1l ‘enTes” Aey 33SuUO0D I)oSeI® 3JUT { {(T300x-'pr10)o813 Adodo<-STY3l = ~ 3001
{ /s LT ©INn3097 UT pPoSsnosIqg x/ } } (TozZTIsS'pPTO) eZTS : (PIO 3<I>3I9S SP 3ISUOD) 13S~ SP
(d ®x<I>OPONS211 ‘SnTea” A9y 3] 3SUOD) JISSUT <[00 ‘I0j3eI®3T>aTed::p3s {} (0)7®zTs ‘(TIAN) 3001 : ()38s™ sp
:otTqnd
{ } 19sTsp sseTo
<1 sseT1o> o3eTdwe]
SSYIO I1dS sd //
//
H
{713d x<IL>SpPON®SIL
uorypyussaxdex //
:o3eatad
0T QPT PUP g ©IN309T UT POSSNOSIP ©q [[IM JUSWSIDSP ¥ JUaWSIDUT //
9T @an3doeT ur pajuswardwr // { {T713d'1 =; T13d uanlidx } (I RI03EIS]T o913 3FSuod)=jrojzerado Tooq
} (d x<I>SPON®9IL ‘onTea A9y} 31 3ISUOD)pPUTI I0JRISQT { f713d'1 == ~13d uanidx } (I 3I03LISIT ©9I3 3ISuod)==103eIado TOOQ
priemzorybrerls eie szojerado suorxedwod //
{ /x (LT @injoeT ur pojuswsTduwl 5/ } (d y<I>OpoN®oi1l)o913 Aoxlssp proa { fenTea<-"13d uan3zax } 3suod () yI03eI2dOo %] 3IFSUOD
{ /x 6 qeT UT pojuswaTdwl x/ } (200X PTO x<I>SPONS2I1)°9I1]1 AdOD 4<I>SPONSSIL Tojurod 8y3 3® enreA 9yl 03 SS900P JURISUOD SATH yI03zeIe2do //
SNOIIONNA ¥AJTAH HIVAIYd // { !sTy3lx uanzex " 33d'pTo = ~x3d } (PTO 3I03BISIT o913 3suod)=103e12d0 3I03RISIT o213
{} ()ao3exs3t @213
!TozTs 3jutr {} (Ta3d'pro) 33d : (PTO 3I0IRISIT 9913 3JISUOD) I0JRISIT o911
{73001 x<I>OPONSSIL {} (d)7x3d : (d x<I>OPONSSI]L)I03RIDIT o913
NOIIVINZSHYdTY // {} (170N) "x3d () I03@183T 2913

:ojeatad :otTqnd
} I03BI9]3T ©913 SSeTO
{ ! (T7IAN) I03eI2]1T uUIN3ISI } 3JISUOD ()pus I03eISIT <1 sseTo> o3erdwsl

{ SSYTO YOIVYALI HAON HAYL //
//

{39s7sp sseTd <1 ssero> ojerdusl

{qubTI yOpONSOIL
{1FJ9T x9PONSSIL

9T @an30eT uTr psjuswsrdwr // fenTen T
} 3suod ()utbeq i03eISIT {} (T7AN) 3ubTx ‘(TIAN) 3FST ‘(3TUT)enTea : (ITUT 3L ISUOD) SPONSSIL
SYOIVYHAII // {} (T7AN) 3ubTx ‘(TINN)IFST : () SPONSSIL
:oTTand
{#(0 ‘713001 ‘x3s0)o213 sAemapTs juTad} 3FISUOD (I3SO BWESIISO: :p3s) o213 sAemopTs jurad proa } SpoN®2IL SseTd
{ <I sseTo> a3eTdwal
{1350 uan3ex SSYTO HAON FIYL //
{(T300a1"s ‘13s0)Ia9pPIO UT JuTaAd'S //

} (S 3<I>239S Sp 3SUOD ‘I3SO BWESISO::pP3s) >>I103e19d0 JWESIJSO: :P3IS PUSTIF

ONIINI¥d ® INdInNo // <K3TTTIn> SpniouT#

<WeSI3SOT> SPNTOUTH
Yy 3°sTSp SuTIOP#

{ #(T300x ‘enTea A9y)oseIS uUINIdI } (SNTeA ASY 3JSUOD 1) SSeIS JUT

{! (73001 ‘enTea”A83)3ISSUT uanN3ldx} (SNTRA A3} 3ISUOD 1) 3ISSUT <[00 ‘x03eI=]3T>ITed::pP3s Y 39S Sp FOPUITH
{ {(T300x1 ‘onTea AS3)pPUTI uaniax } (onTesa Aa} 3] IFSUOD)PUTJ IOJRIDIT ‘pe33TWO useq 9ArPY SuoTIRISdO JUSWSIDSP ¥ JUSWSIOUT I03PISIT oYL //

HSYHA » I¥ASNI ‘ANIA // *39S::p3S 03 IPTTWIS SSPTO 318S paseq 99I13-Azxeurq jo uorjpjuswsTdwr TPTIIRg //

TOIREI 55 0T:L0:00
61/62/01




	Standard Library Sets
	Set iterators
	Set insert
	Set erase
	Set find
	Beginning our implementation of ds_set: The Tree Node Class
	Exercises
	ds_set and Binary Search Tree Implementation
	ds_set: Class Overview
	Exercises
	In-order, Pre-Order, Post-Order Traversal
	Depth-first vs. Breadth-first Search

