
CSCI-1200 Data Structures — Fall 2017
Lab 13 — Multiple Inheritance & Exceptions

For this lab you will build a class inheritance structure to match the hierarchy of classic geometric shapes.
The finished program will read lists of 2D point coordinates from a file, determine the shape described by
each list of points. We will use a somewhat quirky method to determine the type of each shape. We will
pass the list of points to each specialized shape constructor in turn, and if the constructor doesn’t fail, then
we know that that list of points is in fact that type of shape. Remember, the only way for a constructor to
fail is to throw an exception.

Checkpoint 1 - Shape Hierarchy

Consider the “is-a” relationships between these 13 different shapes: Polygon, Triangle, Quadrilateral, Isosce-
les Triangle, Right Triangle, Isosceles Right Triangle, Equilateral Triangle, Trapezoid, Kite, Parallelogram,
Rectangle, Rhombus, and Square. Note that a particular shape may be correctly labeled by more than one
of these names; e.g., a Square is also a Quadrilateral.

Draw the class hierarchy with arrows indicating all of the inheritance relationships (you do not need to
include the member variables or member functions). Be neat, have a consistent (up or down) orientation to
your arrows, and avoid messy scribbles or cross outs and arrow crossings. Sketch the shapes in the input.txt
file and write the name of each shape next to the most specific type of shape it represents.

http://www.cs.rpi.edu/academics/courses/fall17/csci1200/labs/13_inheritance_exceptions/input.txt

The inheritance diagram of these shapes includes multiple inheritance, specifically in the form of the Diamond
Problem. That is, Class D multiply inherits from Class B and Class C, and Class B and Class C each inherit
from Class A. Thus when an object of type D is created, in turn instances of B and C are created, and
unfortunately both will try to make their own instance of A. If two instances of A were allowed, attempts to
refer to member variables or member functions of A would be ambiguous. To solve the problem, we should
specify that B virtually inherits from A and C virtually inherits from A. Furthermore, when we construct
an instance of D, in addition to specifying how to call constructors for B and C, we also explicitly specify
the constructor for A. Note how in the single inheritance example on the right, G only explicitly calls a
constructor for F.

A

C

D

B

virtualvirtual

class A {

public:

A() {}

};

class B : virtual public A {

public:

B() : A() {}

};

class C : virtual public A {

public:

C() : A() {}

};

class D : public B, public C {

public:

D() : A(), B(), C() {}

};

E

F

G

class E {

public:

E() {}

};

class F : public E {

public:

F() : E() {}

};

class G : public F {

public:

G() : F() {}

};

Label the virtual inheritance paths in your diagram. Hint: 6 of the inheritance arrows will be labeled virtual.

To complete this checkpoint: Present your diagram to one of the TAs.

http://www.cs.rpi.edu/academics/courses/fall17/csci1200/labs/13_inheritance_exceptions/input.txt


Checkpoint 2

To start the implementation, we’ll focus on just 7 of those shapes: Polygon, Triangle, Quadrilateral, Isosceles
Triangle, Equilateral Triangle, Rectangle, and Square. This subset will allow us to initially ignore the multiple
inheritance diamond property and the need for virtual inheritance it causes.

Download the code and initial example:

http://www.cs.rpi.edu/academics/courses/fall17/csci1200/labs/13_inheritance_exceptions/simple_main.cpp

http://www.cs.rpi.edu/academics/courses/fall17/csci1200/labs/13_inheritance_exceptions/utilities.h

http://www.cs.rpi.edu/academics/courses/fall17/csci1200/labs/13_inheritance_exceptions/simple.txt

http://www.cs.rpi.edu/academics/courses/fall17/csci1200/labs/13_inheritance_exceptions/output_simple.txt

The program expects 2 command line arguments, the names of the input and output files. Each line of the
input file begins with a string name followed by 3 or more 2D coordinate vertices. The output categorizes
each shape into one or more classes, and into groups with equal angles, equal edges, and/or a right angle.

The provided code includes code to call the constructors of the different classes, generally ordered from most
specific/constrained to least specific. For example, the program will try to create a Square with the data
first, and only if that constructor fails (throws an exception) then it will it try to create a Rectangle.

We also include a utilities.h file with a number of simple geometric operations: e.g., calculate the distance
between two points, calculate the angle between two edges, and compare two distances or two angles and
judge if they are sufficiently close to be called “equal”. Remember that you usually don’t want to check if
two floating point numbers are equal; instead, check if the difference is below an appropriate tolerance.

Create a polygons.h file (and optionally a polygons.cpp file). Create the 7 classes for these shapes deriving
classes from the other classes as appropriate. In each constructor write code to check whether the vertices
passed in meet the requirements for that shape. Throw an exception if you find a problem. Note: Just throw
a value of type integer. The value thrown is unimportant in this program – it will be ignored.

To complete this checkpoint: Compile, run, and debug your program. Study the output and confirm
that your program is correctly labeling the shapes in simple.txt

2

http://www.cs.rpi.edu/academics/courses/fall17/csci1200/labs/13_inheritance_exceptions/simple_main.cpp
http://www.cs.rpi.edu/academics/courses/fall17/csci1200/labs/13_inheritance_exceptions/utilities.h
http://www.cs.rpi.edu/academics/courses/fall17/csci1200/labs/13_inheritance_exceptions/simple.txt
http://www.cs.rpi.edu/academics/courses/fall17/csci1200/labs/13_inheritance_exceptions/output_simple.txt

