
CSCI-1200 Data Structures — Fall 2016
Homework 5 — Linked Playing Cards

In this assignment you will manipulate a linked list of nodes that store playing cards of 4 different suits:
clubs ♣, diamonds ♦, hearts ♥, and spades ♠; and 13 different face values: ace, 2-10, jack, queen, and king.
In physical card games the deck of cards is commonly randomized by first cutting the deck roughly in half,
and then shuffling the two piles into a single stack by interleaving or alternating a card or cards from one
pile with each card or cards from the other pile. This cut & shuffle process is repeated several times. Once
the deck is sufficiently shuffled, the cards are distributed to the other players by dealing the cards from the
top of the stack to each player, one at a time, sequentially, until the required number of cards have been
distributed. Slight imperfections in splitting the deck in half and variation in the number of cards selected
as the piles are interleaved add sufficient variation into the process to achieve randomness in the resulting
deck that allows games of chance to be played without bias to one or more players.

Your task for this assignment is to perform idealized versions of these core card deck operations on a linked
list structure representing the ordered deck of cards.

Provided Framework

We provide a few small classes and the framework for testing the functionality of the different card deck
operations. The PlayingCard class represents a single card (suit & face value) and includes helper functions
to print and compare two cards for sorting (using a high to low ordering grouped by suit that is helpful
for many card games). The Node class holds a single card and stores pointers/links to other cards in the
deck. Interestingly, the linked structure actually maintains two different doubly-linked traversal orders. The
primary traversal is the physical ordering of the cards in the deck (or the order they are received by each
player when the cards are dealt). Note: In some card games the order that the cards are received is part of
game play. A secondary ordering, the sorted order, is also a doubly-linked structure stored within the same
set of Nodes. This second ordering is initially disconnected (everything set to NULL), but when the SortHand
function is called, the blue and red links below are constructed. This additional ordering represents how a
card player might re-organize his/her cards, first by suit, alternating red/black suits, and then by face value
from ace (high) down to 2. This data structure allows us to store and traverse both orderings. Here is a
diagram showing the relationship between Nodes and PlayingCards:

sorted_nextsorted_prev

afterbefore

sorted_nextsorted_prev

afterbefore

sorted_nextsorted_prev

afterbefore

sorted_nextsorted_prev

afterbefore

sorted_nextsorted_prev

afterbefore

10 of diamonds 3 of clubs ace of diamonds king of clubs 4 of clubs

NULL NULL

NULL NULL

first (sorted)top (primary)

First carefully study the provided code files. main.cpp contains the testing infrastructure. You are not to
edit this file except to uncomment the test cases as you progress through the assignment and to add your own
test cases in the specified function. As you read through the provided helper functions and the different test
cases, and study the provided sample output, you should get a feel for the expectations of the operations on
this data. You will write the 10 missing functions from these examples. (Part of your task for this homework
is to deduce the exact function prototypes.)



Missing Functionality

Several of the functions you will write: DeckSize, PrintDeckSorted, SamePrimaryOrder, and
ReversePrimaryOrder, are helper functions that need read-only access to the linked list structure. The
latter two functions are used in inspecting the output of the perfect shuffle described below.

Two of the functions you will write: CopyDeck and DeleteAll, ask you to allocate and deallocate node
objects associated with those variables. The other functions you write should not create or destroy node
objects — rather, you will be re-arranging the links between nodes.

The remaining functions: CutDeck, Shuffle, Deal, SortHand, and PrintDeckSorted, carry out the opera-
tions necessary to model physical card shuffling, dealing, and card sorting. CutDeck splits a single deck into
similar sized sub-decks (the top and bottom of the list):

deck: A♣2♣3♣4♣5♣6♣7♣8♣
top: A♣2♣3♣4♣
bottom: 5♣6♣7♣8♣

Shuffle takes those two smaller pieces and interleaves the cards one or a few cards at a time to form a single
deck again, but with a different order than the original. For the main homework you will implement a perfect
CutDeck and perfect one-by-one Shuffle function. These shuffle results are called a perfect out-shuffle and
perfect in-shuffle depending on whether the top deck or the bottom deck contributes the first card to the
resulting deck.

out shuffle: A♣5♣2♣6♣3♣7♣4♣8♣
in shuffle: 5♣A♣6♣2♣7♣3♣8♣4♣

Interestingly, if we repeatedly perform perfect shuffles, we will restore the data to the original order. The
number of shuffles required depends on the number of cards in the original deck, and also whether we are
performing out- or in- shuffles. See also: http://en.wikipedia.org/wiki/Faro_shuffle

Next, we can Deal all or some of the deck to a specified number of players. We specify the number of cards
each person should receive. The cards are passed to the players one-at-a-time in sequence.

deck: A♣2♣3♣4♣5♣6♣7♣8♣9♣T♣J♣Q♣K♣A♦2♦3♦4♦5♦6♦7♦8♦9♦T♦J♦Q♦K♦A♥2♥3♥4♥5♥
6♥7♥8♥9♥T♥J♥Q♥K♥A♠2♠3♠4♠5♠6♠7♠8♠9♠T♠J♠Q♠K♠

west: A♣5♣9♣K♣4♦8♦Q♦3♥7♥J♥2♠6♠T♠
north: 2♣6♣T♣A♦5♦9♦K♦4♥8♥Q♥3♠7♠J♠
east: 3♣7♣J♣2♦6♦T♦A♥5♥9♥K♥4♠8♠Q♠
south: 4♣8♣Q♣3♦7♦J♦2♥6♥T♥A♠5♠9♠K♠

Once a player has received their hand, the SortHand function can be called to initialize the node pointers
for the secondary sorted ordering shown on the earlier diagram.

west (sorted): T♠6♠2♠Q♦8♦4♦A♣K♣9♣5♣J♥7♥3♥
north (sorted): J♠7♠3♠A♦K♦9♦5♦T♣6♣2♣Q♥8♥4♥
east (sorted): Q♠8♠4♠T♦6♦2♦J♣7♣3♣A♥K♥9♥5♥
south (sorted): A♠K♠9♠5♠J♦7♦3♦Q♣8♣4♣T♥6♥2♥

The provided PlayingCard class includes the logic for comparing two cards to determine which one comes
first in the sorted order. Note: We will not use an STL sort function to construct the sorted order. Instead
we recommend you implement insertion sort, a simple-to-implement, but somewhat inefficient sort routine.

2

http://en.wikipedia.org/wiki/Faro_shuffle
https://en.wikipedia.org/wiki/Insertion_sort


Extra Credit

For extra credit, explore variants on the shuffling model to mimic the randomness that naturally occurs in
physical shuffling. Specifically, the final arguments to the CutDeck and Shuffle functions indicate whether
we are asking for a perfect or random method. When the deck is cut randomly, the two piles should be
roughly the same size, but not necessarily exactly equal. When the shuffle is random (not perfect), the cards
will sometimes be interleaved in pairs, triples, or other small clusters of cards. We recommend STL’s random
number library, e.g., MersenneTwister, as a robust source of randomness for C++ programs.

How many random, not-quite-perfect cut & shuffle actions are sufficient to fully randomize a deck of 52
cards? Recent theoretical research results tell us that number is about 7!

http://en.wikipedia.org/wiki/Shuffling

If we shuffle fewer than 7 times, the possible final positions for a specific card in the resulting deck or the
possible neighboring cards for that element are limited or biased. Devise a scheme to measure the randomness
of shuffling using simple statistics. Use simulated results (over many, many trials) to support the theoretical
proof. Collect data and summarize your conclusions in your README.txt file.

Additional Requirements, Hints, and Suggestions

You may not use lists or vectors or iterators or other STL containers in this assignment. Also, you should not
use the STL sort algorithm. Instead, you will be manipulating the low-level custom Node objects, and the
pointers that connect each Node to other Nodes in the structure. You do not need worry about the efficiency
of your implementation or the efficiency of your sorting algorithm. A simple insertion sort or bubble sort
algorithm is quite efficient for small datasets. Some of your other methods may also seem a little inefficient.
That’s ok for this homework – the goal is to practice linked node pointer manipulation.

The code you write will exist as standalone functions that pass data to and from other functions. We will
not implement a class structure to manage the functionality of this homework. You should work on the
assignment step by step, uncommenting each provided test case, and creating your own additional test cases
to make sure your code is fully debugged. You should not modify the provided code except where indicated,
as we will be compiling and testing your submitted files with different portions of the solution file. To
earn full credit on this homework, your code must also pass the memory error and memory leak checks of
Valgrind/Dr. Memory.

A Note on the Program’s Text Output

To print fancy suit characters, the provided code uses UTF, the Universal Character Set (UCS) Transforma-
tion Format. These characters do not display correctly in all web browsers, console terminals, code editors,
or file viewers. The executable for this homework does not require any command line arguments and the
program will, by default, output these special characters. If the default (no command line arguments) output
looks like gibberish in your usual development environment, terminal console, or file viewer you can provide
the optional command line argument “no_outline_symbols” (solid black versions of all suit symbols) or
“no_symbols” (uses ’C’, ’D’, ’H’, and ’S’ for the suits).

Submission

Use good coding style when you design and implement your program. Be sure to make up new test cases
and don’t forget to comment your code! Please use the provided template README.txt file for any notes you
want the grader to read.

You must do this assignment on your own, as described in the “Collaboration Policy & Academic Integrity”
handout. If you did discuss this assignment, problem solving techniques, or error messages, etc. with anyone,
please list their names in your README.txt file.

3

http://www.cplusplus.com/reference/random/
http://www.cplusplus.com/reference/random/
http://en.wikipedia.org/wiki/Shuffling
http://www.cs.rpi.edu/academics/courses/fall16/csci1200/academic_integrity.php

