CSCI-1200 Data Structures — Fall 2014
Homework 9 — Perfect Hashing

For this assignment you will implement a form of lossless image compression based on perfect hashing. A
perfect hash function for a given set of keys maps those keys to the hash table with no collisions. This
assignment is based on a paper from SIGGRAPH, a prestigious academic computer graphics conference:

“Perfect Spatial Hashing”. S. Lefebvre, H. Hoppe. SIGGRAPH 2006, pages 579-588.
http://research.microsoft.com/en-us/um/people/hoppe/proj/perfecthash/

You are encouraged to read this paper — although it is not necessary to understand all of the details to
complete the assignment. We will only be implementing a small portion of the system described in the paper.
Be sure to read the entire homework description before beginning your implementation.

Using Hashing to Compress Images

The input to this image compression scheme is a 24-bit-per-pixel image which has many, many pure white
pixels (e.g., the leftmost image below). In other words, the non-white pixels are sparse. This compression
scheme will not be effective on typical real-world photographs, where the lighting and shading gradients mean
that the number of pixels with exactly the same color (any color) is quite small.

compress a
48
uncompress
input occupancy hash data offset
49x44 pixels 49x44 pixels 25x25 pixels 13x13 pixels
24 bits/pixel 1 bit/pixel 24 bits/pixel 8 bits/pixel
6481 bytes 317 bytes 1888 bytes 185 bytes

The output of the compression consists of 3 files. First, a 1-bit-per-pixel occupancy image, which is black
(true) where the input image contains data (the non-white pixels), and white (false) everywhere else. Second,
a densely packed hash table containing the non-white pixel data is stored as a 24-bit-per-pixel image, we call
the hash data image. The size of this table depends on the number of non-white pixels in the original image.
Finally, a small 8-bit-per-pixel image is used to store the offset table, which represents the hash function. In
the above example, the total compressed representation is 2390 bytes, which is a 63% compression from the
original representation.

Because the hash function is precisely constructed so that there are no collisions, we do not need to implement
separate chaining or open addressing to resolve collisions. Furthermore, the hash table only needs to store
the value (the pixel color) and does not need to store the key (the original pixel coordinates). Importantly,
this representation allows random access to any pixel without uncompressing the entire image!

Using the Hash Function

Your first task for this assignment is to implement the uncompression phase. This basically boils down to
copying the occupancy image to a full color 24-bit-per-pixel image, and replacing all black pixels with the
color data from the appropriate pixel in the hash data image.

http://research.microsoft.com/en-us/um/people/hoppe/proj/perfecthash/

So how do we lookup a pixel (¢,j) in the hash table? First we grab the offset value, offset(i % s offset:
ihs oﬁset)> where s offset is the size of the offset image. The offset value is an 8-bit number that is split
into dx, a 4-bit offset value in the x direction, and dy, a 4-bit offset value in the y direction. Then we can
calculate the corresponding location in the hash data image, hash data((i +dz) % spqep, (7 +dY) % Spash)
where sp, ., 18 the size of the hash data image. Here’s an example command line to perform uncompression:

hw9.exe uncompress occupancy.pbm data.ppm offset.offset output.ppm

In addition to visually inspecting the results, you may check that your program correctly and losslessly
uncompressed the data with this command:

hw9.exe compare inputl.ppm input2.ppm output.pbm

which prints the number of non-matching pixels and creates a 1-bit-per-pixel difference image that is black
(true) where the pixels are the same, and white (false) where the pixel colors are different.

Constructing the Hash Function

The second part of the assignment is to perform image compression. The real challenge, of course, is to
construct a small, perfect hash function. To guarantee that there are no collisions, we must be given all of
the keys (non-white pixel coordinates) ahead of time. After the function is constructed, the user is allowed
to change the color of the non-white (data) pixels. However, the user cannot add new data pixels after the
hash function is constructed, because we cannot guarantee a collision free hashing of these new pixels.

Rather than representing the hash function as a mathematical formula or a simple C++ function, the hash
function is stored as a lookup table of data, stored as an “offset image”. What’s a good size for the offset
image? What’s a good size for the hash data image? Lefebvre & Hoppe recommend starting with:

Shash = [Vv 1.0L%p -| Soffset = { L —‘

4

where p is the number of non-white pixels in the input image. In the example below we have a 6x6 input
image with p = 8 non-white pixels. Thus, we select sy, = 3 and s ogset = 2. First, let’s consider what
happens if we assign all offsets to be 0. Applying the hash lookup described above to the non-white pixels in
the input image (shown in the top row below), we will get collisions in two of the hash data cells. Because
we can only store one color per bin/pixel in the hash data image, this will not be a lossless representation of
the input image.

input offset hash data

: 2IE,__’.

; 0,0 0,0
2 [l D 1 ﬂ
y=0 00 Moo

s y=0

x=0 1
1 . H B

1.1 1,0
soE o
y=0 |_ _I =
2.1 o,o |
x=0 1 x=0 1 2

Example from: http://research.microsoft.com/en-us/um/people/hoppe/perfecthash.pptx

http://research.microsoft.com/en-us/um/people/hoppe/perfecthash.pptx

How do we assign offset values to separate these collisions? The idea is to first assign the offset values that
are used a lot, since they will control the placement of many values and will be the trickiest to separate from
each other. We sort the offset cells by the number of values mapping to each offset cell: {1,3,5}, {2,7}, {4,6},
and {8}. We first choose an offset for the cell containing 1, 3, and 5. Since nothing has been assigned to
the hash table, anything will do. We choose (0,0). Then, we take the next most populous offset table cell,
containing 2 and 7. We search through all possible offsets to find one that does not collide with the values
already in the table. (1,0) works. Etc. As we work our way through the sorted list, the hash table will have
fewer empty cells making it harder to choose a collision-free offset. But fortunately, the number of entries
we are placing is also decreasing so it is still quite likely we will find a spot.

We are not guaranteed to find an assignment of offset values that completely separates the data with this
greedy method. To guarantee that we find an appropriate assignment of offset values, if it exists, it would
be necessary to implement a search over all assignments (you may do this for extra credit). If the greedy
method fails to find a perfect hash function for a particular choice of s, ., and s offsets Lefebvre and Hoppe
recommend that we increase s offset by 1 and try again. We can also increase the size of the hash table (so
there are more empty slots). Note: To ensure that entries that collide in the offset table do not collide in
the hash table, sp, .5, and s offset should not share any common factors. Here’s a sample command line to
construct a perfect hash function and perform compression:

hw9.exe compress input.ppm occupancy.pbm data.ppm offset.offset

Viewing .ppm, .pbm, and .offset Images

The input, hash data, and output files are stored in the standard “Portable Pixel Map” format, .ppm. The
occupancy file is stored as a “Portable Bit Map”, .pbm. Many standard image viewing programs (Photoshop,
GIMP, xv) will load and display these images. On UNIX/Cygwin, ImageMagick can be used to convert
between image formats, such as the popular “Portable Network Graphics” format, .png. For example:

convert.exe tmp.ppm tmp.png

The offset image is stored in a non-standard, 8-bit per pixel, custom binary format, with a filename ending
in .offset. This format won’t be recognized by any of image programs listed above. To visualize this data
in the cyan/purple/blue images shown in this document, you will need to first convert the .offset file to a
(larger) .ppm file with this command:

hw9.exe visualize_offset myfile.offset myfile.ppm

Provided Code and Homework Submission

Please study the provided code for parsing command line arguments and loading and saving image files with
the templated Image class. Your task for this assignment is to complete the Compress and UnCompress
functions. Be sure to write and use helper functions in your solution to keep your code organized and easy
to understand and debug.

Use the provided template README. txt file to summarize the results of your implementation and your testing
on a variety of image images. What compression ratio were you able to achieve with your solution? You
must do this assignment on your own, as described in the “Academic Integrity for Homework”
handout. If you did discuss the problem or error messages, etc. with anyone, please list their
names in your README. txt file.

