
CSCI-1200 Data Structures — Fall 2012

Lecture 6 — Pointers & Dynamic Memory

Review from Lecture 5

• Pointer variables, arrays, pointer arithmetic and dereferencing, character arrays, and calling conventions.

Today’s Lecture — Pointers and Dynamic Memory

Optional Reading: Koening & Moo rest of Chapter 10

• Arrays and pointers, different types of memory, dynamic allocation of arrays, and examples.

6.1 Three Types of Memory

• Automatic memory: memory allocation inside a function when you create a variable. This allocates space for
local variables in functions (on the stack) and deallocates it when variables go out of scope. For example:

int x;

double y;

• Static memory: variables allocated statically (with the keyword static). They are are not eliminated when
they go out of scope. They retain their values, but are only accessible within the scope where they are defined.

static int counter;

• Dynamic memory: explicitly allocated (on the heap) as needed. This is our focus for today.

6.2 Dynamic Memory

• Dynamic memory is:

– created using the new operator,

– accessed through pointers, and

– removed through the delete operator.

• Here’s a simple example involving dynamic allocation of integers:

int * p = new int;

*p = 17;

cout << *p << endl;

int * q;

q = new int;

*q = *p;

*p = 27;

cout << *p << " " << *q << endl;

int * temp = q;

q = p;

p = temp;

cout << *p << " " << *q << endl;

delete p;

delete q;

heapstack

p

q

temp

17

• The expression new int asks the system for a new chunk of memory that is large enough to hold an integer
and returns the address of that memory. Therefore, the statement int * p = new int; allocates memory
from the heap and stores its address in the pointer variable p.

• The statement delete p; takes the integer memory pointed by p and returns it to the system for re-use.

• This memory is allocated from and returned to a special area of memory called the heap. By contrast, local
variables and function parameters are placed on the stack as discussed last lecture.

• In between the new and delete statements, the memory is treated just like memory for an ordinary variable,
except the only way to access it is through pointers. Hence, the manipulation of pointer variables and values is
similar to the examples covered in Lecture 5 except that there is no explicitly named variable for that memory
other than the pointer variable.

• Dynamic allocation of primitives like ints and doubles is not very interesting or significant. What’s more
important is dynamic allocation of arrays and objects.

6.3 Exercise

• What’s the output of the following code? Be sure to draw a picture to help you figure it out.

double * p = new double;

*p = 35.1;

double * q = p;

cout << *p << " " << *q << endl;

p = new double;

*p = 27.1;

cout << *p << " " << *q << endl;

*q = 12.5;

cout << *p << " " << *q << endl;

delete p;

delete q;

6.4 Dynamic Allocation of Arrays

• Declaring the size of an array at compile time doesn’t offer much flexibility. Instead we can dynamically allocate
an array based on data. This gets us part-way toward the behavior of the standard library vector class. Here’s
an example:

int main() {

cout << "Enter the size of the array: ";

int n,i;

cin >> n;

double *a = new double[n];

for (i=0; i<n; ++i)

a[i] = sqrt(i);

for (i=0; i<n; ++i)

if (double(int(a[i])) == a[i])

cout << i << " is a perfect square " << endl;

delete [] a;

return 0;

}

i

stack heap

n

a

• Consider the line: double *a = new double[n];

– The expression new double[n] asks the system to dynamically allocate enough consecutive memory to
hold n double’s (usually 8n bytes).

– What’s crucially important is that n is a variable. Therefore, its value and, as a result, the size of the
array are not known until the program is executed. When this happens, the memory must be allocated
dynamically.

– The address of the start of the allocated memory is assigned to the pointer variable a.

• After this, a is treated as though it is an array. For example: a[i] = sqrt(i);

In fact, the expression a[i] is exactly equivalent to the pointer arithmetic and dereferencing expression *(a+i)

which we have seen several times before.

• After we are done using the array, the line: delete [] a; releases the memory allocated for the entire
array. Without the [], only the first double would be released.

– Since the program is ending, releasing the memory is not a major concern. However, to demonstrate
that you understand memory allocation & deallocation, you should always delete dynamically allocated
memory in this course, even if the program is terminating.

– In more substantial programs it is ABSOLUTELY CRUCIAL. If we forget to release memory repeatedly
the program can be said to have a memory leak. Long-running programs with memory leaks will eventually
run out of memory and crash.

6.5 Exercises

1. Write code to dynamically allocate an array of n integers, point to this array using the integer pointer variable
a, and then read n values into the array from the stream cin.

2

2. Now, suppose we wanted to write code to double the size of array a without losing the values. This requires
some work: First allocate an array of size 2*n, pointed to by integer pointer variable temp (which will become
a). Then copy the n values of a into the first n locations of array temp. Finally delete array a and assign temp

to a.

Why don’t you need to delete temp? Note: The code for part 2 of the exercise is very similar to what happens
inside the resize member function of vectors!

6.6 Dynamic Allocation: Arrays of Class Objects

• We can dynamically allocate arrays of structs and class objects The default constructor (the constructor that
takes no arguments) must be defined in order to allocate an array of objects.

class Foo {

public:

Foo() {

static int counter = 1;

a = counter;

b = 100.0;

counter++;

}

double value() const { return a*b; }

private:

long long int a;

double b;

};

int main() {

int n;

cin >> n;

Foo *things = new Foo[n];

cout << "size of foo object: " << sizeof(Foo) << endl;

for (Foo* i = things; i < things+n; i++)

cout << "Foo stored at: " << i << " has value " << i->value() << endl;

delete [] things;

}

6.7 Diagramming Memory Exercises

• Draw a diagram of the heap and stack memory for each segment of code below. Use a “?” to indicate that the
value of the memory is uninitialized. Indicate whether there are any errors or memory leaks during execution
of this code.

class Foo {

public:

double x;

int* y;

};

Foo a;

a.x = 3.14159;

Foo *b = new Foo;

(*b).y = new int[2];

Foo *c = b;

a.y = b->y;

c->y[1] = 7;

b = NULL;

int a[5] = { 10, 11, 12, 13, 14 };

int *b = a + 2;

*b = 7;

int *c = new int[3];

c[0] = b[0];

c[1] = b[1];

c = &(a[3]);

• Write code to produce this diagram: b:

4.2

2.9

8.6

stack heap

6.5

3.4

5.1

a:

3

6.8 Dynamic Allocation Example: The Sieve of Eratosthenes

• Let’s explore the problem of finding all primes less than a given integer, n, using the Sieve of Eratosthenes
algorithm.

• The algorithm is a “casting out” algorithm: each discovered prime is used to cast out all of its multiples from
a list of potential primes.

• We’ll use dynamic memory allocation of an array to implement the algorithm.

int main(int argc, char* argv[]) {

// Check usage. Take n from the 1st argument. Make sure it is positive.

if (argc != 2) {

cerr << "Usage:\n " << argv[0] << " n\n" << "where n is a positive integer\n";

return 0;

}

int n = atoi(argv[1]);

if (n <= 0) {

cerr << "Usage:\n " << argv[0] << " n\n" << "where n is a positive integer\n";

return 0;

}

int prime_count = 0;

// Create and initialize a dynamically allocated array to keep track

// of whether the number 1->n are prime

// Process and output the numbers that are prime

// Release the dynamically allocated memory

cout << "\nThere are " << prime_count << " primes <= " << n << endl;

return 0;

}

6.9 Solutions to Diagramming Memory Exercises

heap

7
?

x: 3.14
y:

b:
c:

a:

y:
x: ?

NULL

stack

12

14

int* a

int* b

int* c

10

11

13

7

7

13

?

the stack the heap

There is a memory leak of
3 ints in this program.

double a[3];

double *b = new double[3];

a[0] = 4.2;

a[1] = 8.6;

a[2] = 2.9;

b[0] = 6.5;

b[1] = 5.1;

b[2] = 3.4;

4

