Beginning OS Development

First consider that there are several types
of kernels you could develop:

A Monolithic kernel - The core os functions
are integrated & it can load additional
modules at runtime.

A Microkernel - Only minimal os
functionality is in the kermel (mem/process
management) other things run in
userspace.

A Hybrid kernel - Essentially “microkernel commands
with extentions”, similar to a monolithic
kernel except that it does not load modules
on its own.

Ofcourse there are more, but the good
news is you don't have to decide what type you are developing yet, you just want
something that boots.

What you need:

-Knowledge of C & Basic ASM

-NASM Assembler & GCC

-A Text Editor

-Quemu for Testing (Unless you like using floppies)

-Grub Files

(Only the files stagel and stage2 from the grub project website)
-LD Linker

First the Kernel Entry:

This is called by the bootloader, it intializes basic settings and is the entry into
your kernel.
It is almost always written in assembly since some things just can't be done in C.

[BITS 32]

global start

start:
mov esp, Ssys stack;
jmp stublet

ALIGN 4
mboot:
MULTIBOOT _PAGE_ALIGN equ 1<<0
MULTIBOOT_MEMORY_INFO equ 1<<1
MULTIBOOT _AOUT KLUDGE equ 1<<16
MULTIBOOT _HEADER MAGIC equ 0x1BADB002
MULTIBOOT _HEADER_FLAGS equ MULTIBOOT PAGE_ALIGN |
MULTIBOOT_MEMORY_INFO | MULTIBOOT _AOUT KLUDGE
MULTIBOOT _CHECKSUM equ -(MULTIBOOT_HEADER_MAGIC +
MULTIBOOT _HEADER_FLAGS)
EXTERN code, bss, end

; GRUB Multiboot header (Boot Sig)
dd MULTIBOOT_HEADER_MAGIC

dd MULTIBOOT_HEADER_FLAGS

dd MULTIBOOT_CHECKSUM

; For linker script
dd mboot

dd code

dd bss

dd end

dd start

stublet:
extern main <--- Refers to our main C file which we will code later
call main <--- You don't need these two lines (yet)

jmp $

SECTION .bss
resb 8192
_sys_stack:

Loads up a new 8 Kylobyte Stack and Jumps into an infinite loop. Has a unique
signature recognized by grub (that is the bootloader you are going to be using).

Next The Linker:

The Linker is the application that takes the compiled C and ASM out files and
combines them into one binary file that will be your kernel. It is typically ELF
format.

OUTPUT_FORMAT(elf32-i386) <--- The type of image you want to produce
ENTRY(start)
phys = 0x00100000; <--- Pointer to 1MB where we want to load and run our

binary
SECTIONS
{
text phys : AT(phys) {
code = ;
*(.text)
*(.rodata)
. = ALIGN(4096); <--- Ensures that each section starts at a sepperate page
in memory
}

.data : AT(phys + (data - code)) {
ey lib || obj || obj

. = ALIGN(4096);

¥

.bss : AT(phys + (bss - code)) {
bss = .;

*(.bss)

. = ALIGN(4096);

}

end = .;

}

At this point you can build your 'basic'
system, it wont do anything yet ...but

atleast it will compile.

nasm -f aout -o start.o start.asm I | b d I I eXe

Id -T link.ld -0 kernel.bin start.o

You may want to create a makefile to streamline this process as it gets more
complicated later.
Next your Main file:

This is your C entry point, you will have all further code branching out of this.
Since this is your new operating system you will have to write your own standard
libraries.

General rule: If you #include it and you haven't coded it, you are doing it wrong!

This main never returns, instead it will end up in a infinite loop.

void main()
{

for(;;);
}

The first library you want to start working on is your system.h
-A Basic system.h should have following, having these functions will make your
life easier.

#ifndef _SYSTEM_H
#define _ SYSTEM_H

/* These could be put in your “main” file */

extern unsigned char *memcpy(unsigned char *dest, const unsigned char *src, int
count);

extern unsigned char *memset(unsigned char *dest, unsigned char val, int count);
extern unsigned short *memsetw(unsigned short *dest, unsigned short val, int
count);

extern int strlen(const char *str);

extern unsigned char inportb (unsigned short port);

extern void outportb (unsigned short port, unsigned char _data);

extern void cls();
extern void putch(unsigned char c);
extern void puts(unsigned char *str);

----Now you can #include system.h and get started on coding it!----
Update main:

#include system.h
/* Functions for the system go here */
void main()

{
for(;;);
}

To compile:

gcc -Wall -0 -fstrength-reduce -fomit-frame-pointer -finline-functions -nostdinc -fno-builtin
-I./include -c -0 main.o main.c

Notice how things are omited during the compile: “-fomit-frame-pointer,
-nosttdinc & fno-builtin”

Creating the boot floppy:

To run this basic system you need to make your floppy image. Your linker should
spit out a binary for you called kernel.bin.

cat stagel stage2 pad kernel.bin > floppy.img //On *Nix systems
copy /b stagel+stage2+pad+kernel.bin floppy.img //Win32

To run with QEMU:

Qemu -fda floppy.img

Whats Next?
-Writing Drivers
-Basic Graphics
-Memory Management

-Filesystem

