
CSCI-1200 Computer Science II — Fall 2008

Lecture 19 – Operators & Friends

and Hash Tables, Part I

Announcements: Test 3 Information

• Test 3 will be held on Tuesday, November 11th, 2008 from 2-3:50pm in West Hall Auditorium.
No make-ups will be given except for emergency situations, and even then a written excuse from the Dean of
Students office will be required.

• Coverage: Lectures 1-19, Labs 1-11, HW 1-8.

• Closed-book and closed-notes except for 1 sheet of notes on 8.5x11 inch paper (front & back) that may be
handwritten or printed.

Review from Lecture 18

• Longest & shortest paths, depth-first vs. breadth-first, increment and decrement operations on iterators, red-
black trees

Today’s Lecture

• Operators as non-member functions, as member functions, and as friend functions.

• Hash Tables, Hash Functions, and Collision Resolution

• Hash Table Performance, Binary Search Trees vs. Hash Tables

Ford & Topp Sections 12.1-12.2.

19.1 Complex Numbers — A Brief Review

• Complex numbers take the form z = a + bi, where i =
√
−1 and a and b are real. a is called the real part, b is

called the imaginary part.

• If w = c + di, then

– w + z = (a + c) + (b + d)i,
– w − z = (a− c) + (b− d)i, and
– w × z = (ac− bd) + (ad + bc)i

• The magnitude of a complex number is
√

a2 + b2.

19.2 Complex Class declaration (complex.h)

class Complex {

public:

Complex(double x=0, double y=0) : real_(x), imag_(y) {} // default constructor

Complex(Complex const& old) : real_(old.real_), imag_(old.imag_) {} // copy constructor

Complex& operator= (Complex const& rhs); // Assignment operator

double Real() const { return real_; }

void SetReal(double x) { real_ = x; }

double Imaginary() const { return imag_; }

void SetImaginary(double y) { imag_ = y; }

double Magnitude() const { return sqrt(real_*real_ + imag_*imag_); }

Complex operator+ (Complex const& rhs) const;

Complex operator- () const; // unary operator- negates a complex number

friend istream& operator>> (istream& istr, Complex& c);

private:

double real_, imag_;

};

Complex operator- (Complex const& left, Complex const& right); // non-member function

ostream& operator<< (ostream& ostr, Complex const& c); // non-member function

19.3 Implementation of Complex Class (complex.cpp)

// Assignment operator

Complex& Complex::operator= (Complex const& rhs) {

real_ = rhs.real_;

imag_ = rhs.imag_;

return *this;

}

// Addition operator as a member function.

Complex Complex::operator+ (Complex const& rhs) const {

double re = real_ + rhs.real_;

double im = imag_ + rhs.imag_;

return Complex(re, im);

}

// Subtraction operator as a non-member function.

Complex operator- (Complex const& lhs, Complex const& rhs) {

return Complex(lhs.Real()-rhs.Real(), lhs.Imaginary()-rhs.Imaginary());

}

// Unary negation operator. Note that there are no arguments.

Complex Complex::operator- () const {

return Complex(-real_, -imag_);

}

// Input stream operator as a friend function

istream& operator>> (istream & istr, Complex & c) {

istr >> c.real_ >> c.imag_;

return istr;

}

// Output stream operator as an ordinary non-member function

ostream& operator<< (ostream & ostr, Complex const& c) {

if (c.Imaginary() < 0) ostr << c.Real() << " - " << -c.Imaginary() << " i ";

else ostr << c.Real() << " + " << c.Imaginary() << " i ";

return ostr;

}

19.4 Operators as Non-Member Functions and as Member Functions

• We have already written our own operators, especially operator<, to sort objects stored in STL containers
and to create our own keys for maps.

• We can write them as non-member functions (e.g., operator-). When implemented as a non-member function,
the expression: z - w is translated by the compiler into the function call: operator- (z, w)

• We can also write them as member functions (e.g., operator+). When implemented as a member function, the
expression: z + w is translated into: z.operator+ (w)

This shows that operator+ is a member function of z, since z appears on the left-hand side of the operator.
Observe that the function has only one argument!

There are several important properties of the implementation of an operator as a member function:

– It is within the scope of class Complex, so private member variables can be accessed directly.

– The member variables of z, whose member function is actually called, are referenced by directly by name.

– The member variables of w are accessed through the parameter rhs.

– The member function is const, which means that z will not (and can not) be changed by the function.
Also, since w will not be changed since the argument is also marked const.

• Both operator+ and operator- return Complex objects, so both must call Complex constructors to create these
objects. Calling constructors for Complex objects inside functions, especially member functions that work on
Complex objects, seems somewhat counter-intuitive at first, but it is common practice!

2

19.5 Assignment Operators

• The assignment operator: z1 = z2; becomes a function call: z1.operator=(z2);

And cascaded assignments like: z1 = z2 = z3; are really: z1 = (z2 = z3);
which becomes: z1.operator= (z2.operator= (z3));

Studying these helps to explain how to write the assignment operator, which is usually a member function.

• The argument (the right side of the operator) is passed by constant reference. Its values are used to change
the contents of the left side of the operator, which is the object whose member function is called. A reference
to this object is returned, allowing a subsequent call to operator= (z1’s operator= in the example above).

The identifier this is reserved as a pointer inside class scope to the object whose member function is called.
Therefore, *this is a a reference to this object.

• The fact that operator= returns a reference allows us to write code of the form: (z1 = z2).real();

19.6 Exercise

Write an operator+= as a member function of the Complex class. To do so, you must combine what you learned
about operator= and operator+. In particular, the new operator must return a reference, *this.

19.7 Returning Objects vs. Returning References to Objects

• In the operator+ and operator- functions we create new Complex objects and simply return the new object.
The return types of these operators are both Complex.

Technically, we don’t return the new object (which is stored only locally and will disappear once the scope of
the function is exited). Instead we create a copy of the object and return the copy. This automatic copying
happens outside of the scope of the function, so it is safe to access outside of the function. Note: It’s important
that the copy constructor is correctly implemented! Good compilers can minimize the amount of redundant
copying without introducing semantic errors.

• When you change an existing object inside an operator and need to return that object, you must return a
reference to that object. This is why the return types of operator= and operator+= are both Complex&.
This avoids creation of a new object.

• A common error made by beginners (and some non-beginners!) is attempting to return a reference to a locally
created object! This results in someone having a pointer to stale memory. The pointer may behave correctly
for a short while... until the memory under the pointer is allocated and used by someone else.

19.8 Friend Classes vs. Friend Functions

• In the example below, the Foo class has designated the Bar to be a friend. This must be done in the public
area of the declaration of Foo.

class Foo {

public:

friend class Bar;

...

};

This allows member functions in class Bar to access all of the private member functions and variables of a Foo
object as though they were public (but not vice versa). Note that Foo is giving friendship (access to its private
contents) rather than Bar claiming it. What could go wrong if we allowed friendships to be claimed?

• Alternatively, within the definition of the class, we can designate specific functions to be “friend”s, which
grants these functions access similar to that of a member function. The most common example of this is
operators, and especially stream operators.

3

19.9 Stream Operators as Friend Functions

• The operators >> and << are defined for the Complex class. These are binary operators.
The compiler translates: cout << z3 into: operator<< (cout, z3)
Consecutive calls to the << operator, such as: cout << "z3 = " << z3 << endl;
are translated into: ((cout << "z3 = ") << z3) << endl;
Each application of the operator returns an ostream object so that the next application can occur.

• If we wanted to make this function a member function, it would have to be a member function of the ostream
class because this is the first argument. We cannot make it a member function of the Complex class. This is
why stream operators are never member functions.

• Stream operators are either ordinary non-member functions (if the operators can do their work through the
public class interface) or friend functions (if they need non public access).

19.10 Summary of Operator Overloading in C++

• Unary operators that can be overloaded: + - * & ~ ! ++ -- -> ->*

• Binary operators that can be overloaded: + - * / % ^ & | << >> += -= *= /= %= ^=
&= |= <<= >>= < <= > >= == != && || , [] () new new[] delete delete[]

• There are only a few operators that can not be overloaded: . .* ?: ::

• We can’t create new operators and we can’t change the number of arguments (except for the function call
operator, which has a variable number of arguments).

• There are three different ways to overload an operator. When there is a choice, we recommend trying to write
operators in this order:

– Non-member function
– Member function
– Friend function

• The most important rule for clean class design involving operators is to NEVER change the intuitive
meaning of an operator. The whole point of operators is lost if you do. One (bad) example would be
defining the increment operator on a Complex number.

19.11 Extra Practice

• Implement the following operators for the Complex class (or explain why they cannot or should not be imple-
mented). Think about whether they should be non-member, member, or friend.
operator* operator== operator!= operator<

19.12 Definition: What’s a Hash Table?

• A table implementation with constant time access.

– Like a map, we can store key-value pair associations in the hash table.
But it’s even faster to do find, insert, and erase with a hash table!
However, hash tables don’t store the data in sorted order.

• A hash table is implemented with a array at the top level.

• Each key is mapped to a slot in the array by a hash function.

19.13 Definition: What’s a Hash Function?

• A simple function of one argument (the key) which returns an index (a bucket or slot in the array).

• Ideally the function will “uniformly” distribute the keys throughout the range of legal index values (0 → k-1).

• What’s a collision?
When the hash function maps multiple (different) keys to the same index.

• How do we deal with collisions?
One way to resolve this is by storing a linked list of values at each slot in the array.

4

19.14 Example: Caller ID

• We are given a phonebook with 50,000 name/number pairings. Each number is a 10 digit number. We need to
create a data structure to lookup the name matching a particular phone number. Ideally, name lookup should
be O(1) time expected, and the caller ID system should use O(n) memory (n = 50,000).

• We’ll review how we solved this problem in Lab 9 with an STL vector then an STL map. Finally, we’ll
implement the system with a hash table.

• Note: In the toy implementations that follow we use small datasets, but we should evaluate the system scaled
up to handle the large dataset.

19.15 Caller ID with an STL Vector

void add(vector<string> &phonebook, int number, string name) {

phonebook[number] = name;

}

void identify(const vector<string> &phonebook, int number) {

if (phonebook[number] == "UNASSIGNED") cout << "unknown caller!" << endl;

else cout << phonebook[number] << " is calling!" << endl;

}

int main() {

// create the phonebook, initially all numbers are unassigned

vector<string> phonebook(10000, "UNASSIGNED");

// add several names to the phonebook

add(phonebook, 1111, "fred");

add(phonebook, 2222, "sally");

add(phonebook, 3333, "george");

// test the phonebook

identify(phonebook, 2222);

identify(phonebook, 4444);

}

Exercise: What’s the memory usage for the vector-based Caller ID system?
What’s the expected running time for find, insert, and erase?

19.16 Caller ID with an STL Map

void add(map<int,string> &phonebook, int number, string name) {

phonebook[number] = name;

}

void identify(const map<int,string> &phonebook, int number) {

map<int,string>::const_iterator tmp = phonebook.find(number);

if (tmp == phonebook.end()) cout << "unknown caller!" << endl;

else cout << tmp->second << " is calling!" << endl;

}

int main() {

// create the phonebook, initially all numbers are unassigned

map<int,string> phonebook;

// add several names to the phonebook

add(phonebook,1111,"fred");

add(phonebook,2222,"sally");

add(phonebook,3333,"george");

// test the phonebook

identify(phonebook,2222);

identify(phonebook,4444);

}

Exercise: What’s the memory usage for the map-based Caller ID system?
What’s the expected running time for find, insert, and erase?

5

19.17 Now let’s implement Caller ID with a Hash Table

erin

0
1
2
3
4
5
6
7
8
9

5182764321
dan

6175551212
fred

5182761234
alice

5182761267
carol

bob
5182765678 5182764488

#define PHONEBOOK_SIZE 10

class Node {

public:

int number;

string name;

Node* next;

};

// corresponds a phone number to a slot in the array

int hash_function(int number) {

}

// add a number, name pair to the phonebook

void add(Node* phonebook[PHONEBOOK_SIZE],

int number, string name) {

}

// given a phone number, determine who is calling

void identify(Node* phonebook[PHONEBOOK_SIZE], int number) {

}

int main() {

// create the phonebook, initially all numbers are unassigned

Node* phonebook[PHONEBOOK_SIZE];

for (int i = 0; i < PHONEBOOK_SIZE; i++)

phonebook[i] = NULL;

// add several names to the phonebook

add(phonebook, 1111, "fred");

add(phonebook, 2222, "sally");

add(phonebook, 3333, "george");

// test the phonebook

identify(phonebook, 2222);

identify(phonebook, 4444);

}

19.18 Exercise: Choosing a Hash Function

• What’s a good hash function for this application?

• What’s a bad hash function for this application?

19.19 Exercise: Hash Table Performance

• What’s the memory usage for the hash-table-based Caller ID system?

• What’s the expected running time for find, insert, and erase?

6

	Complex Numbers --- A Brief Review
	Complex Class declaration (complex.h)
	Implementation of Complex Class (complex.cpp)
	Operators as Non-Member Functions and as Member Functions
	Assignment Operators
	Exercise
	Returning Objects vs. Returning References to Objects
	Friend Classes vs. Friend Functions
	Stream Operators as Friend Functions
	Summary of Operator Overloading in C++
	Extra Practice
	Definition: What's a Hash Table?
	Definition: What's a Hash Function?
	Example: Caller ID
	Caller ID with an STL Vector
	Caller ID with an STL Map
	Now let's implement Caller ID with a Hash Table
	Exercise: Choosing a Hash Function
	Exercise: Hash Table Performance

