
1

8 Using OWL-Fast in the Wild

We have seen a number of examples of the use of OWL-Fast modeling for merging

information from multiple sources in a dynamic and flexible way. In this chapter, we will

describe two extended uses of the OWL-Fast constructs. Both of these applications of

OWL-Fast have attracted considerable user communities in their respective fields. Both

of them also make essential use of the constructs in OWL-Fast, though often in quite

different ways. These are real modeling applications built by groups who originally had

no technology commitment to RDFS or OWL (though both were conceived as RDF

applications).

In both cases, the projects are about setting up an infrastructure for a particular web

community. The use of OWL-Fast appears in the models that describe data in these

communities, rather than in the every day use in these communities. In this book, we are

describing how modeling work in RDFS and OWL, so we focus on the community

infrastructure of these projects.

The first application is called SKOS, the Simple Knowledge Organization System,

and proposes a Semantic Web approach to expressing concept organization systems such

as thesauri, taxonomies, and controlled vocabularies in RDF.

The second application is called FOAF, for “Friend of a Friend”. FOAF is a project

dedicated to creating and using machine-readable homepages that describe people, the

links between them and the things they create and do. It is based on RDF, but originally

made no commitment to RDFS or OWL.

Both of these projects were originally based on RDF because of the inherently

distributed and web-like nature of the project requirements. As the projects evolved, they

2

found a need to be able to describe the relationships between various resources in a

formal way; this led both of them to RDFS and then on to OWL-Fast.

In this chapter, we will describe each of these modeling systems, and show the use

they have made of the OWL-Fast constructs we introduced in the previous chapters.

8.1 SKOS

SKOS (“Simple Knowledge Organization System”) was developed by the Institute

for Learning & Research Technology to provide a standard for representing knowledge

organization systems (including controlled vocabularies, thesauri, taxonomies and

folksonomies) in a distributed and linkable way. Given the existence of several thesaurus

standards, one could well wonder why this group found it necessary to create another

one. The key differentiator between SKOS and other thesaurus standards is its basis in

the Semantic Web; unlike other standards, SKOS was designed from the start to allow

modelers to create modular knowledge organizations that can be re-used and referenced

across the web. SKOS was not designed to replace any other thesaurus standard, but in

fact to augment it, by bringing the distributed nature of the Semantic Web to thesauri and

controlled vocabularies. Toward this end, it was also a design goal of SKOS that it be

possible to map other thesaurus standards to SKOS in a fairly straightforward way.

SKOS is organized in layers; the SKOS Core is the most mature, and the part that

maps directly to other thesaurus standards. SKOS Mapping is an extension to SKOS that

defines a number of specific properties for mapping thesaurus concepts from one source

to another. In this section we will concentrate on describing the mature SKOS Core in

terms of its usage of OWL-Fast, and the inferences that it entails.

3

Figure 8-1 shows a sample from a SKOS thesaurus, in which a small fragment of the
UK Archival Thesaurus has been rendered in SKOS. The diagram shows seven concepts,
which are related to one another by various properties that are defined in the SKOS Core.
Data properties are shown within the boxes corresponding to the concepts. As we shall
see, each of these properties is defined in relation to other properties, so that certain
useful inferences can be made.

8-1 Sample Thesaurus in SKOS. Example from W3C; data from UKAT.

The same information from Figure 8-1 is shown as triples in N3 below:

4

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix core: <http://www.w3.org/2004/02/skos/core#>.
@prefix UKAT: <http://www.workingontologist.com/Ch8/UKAT.owl#>.

UKAT:EconomicCooperation a core:Concept;
 core:altLabel "Economic co-operation";
 core:broader UKAT:EconomicPolicy;
 core:narrower UKAT:IndustrialCooperation,
 UKAT:EconomicIntegration,
 UKAT:EuropeanIndustrialCooperation,
 UKAT:EuropeanEconomicCooperation;
 core:prefLabel "Economic cooperation";
 core:related UKAT:Interdependence;
 core:scopeNote "Includes cooperative measures in
banking, trade, industry etc., between and among
ocuntries.".

UKAT:EconomicIntegration a core:Concept;
 core:prefLabel "Economic integration".

UKAT:EconomicPolicy a core:Concept;
 core:prefLabel "Economic policy".

UKAT:EuropeanEconomicCooperation a core:Concept;
 core:prefLabel "European economic cooperation".

UKAT:EuropeanIndustrialCooperation a core:Concept;
 core:prefLabel "European industrial cooperation".

UKAT:IndustrialCooperation a core:Concept;
 core:prefLabel "Industrial cooperation".

UKAT:Interdependence a core:Concept;
 core:prefLabel "Interdependence".

First, let’s look at the notion of labels in SKOS. As we have seen in section

6.3.8XXX, there is already a label resource defined in RDFS, rdfs:label. While rdfs:label

has no formal semantics defined (that is, there are no inferences that concern rdfs:label),

it does have the informal meaning that it is something that can be used as the printable or

human readable name of a resource. SKOS provides a more detailed notion of a

5

concept’s label, in accordance with usual thesaurus practice. In particular, it defines three

different kinds of labels, a preferred label, an alternative label, and a hidden label. These

are defined in SKOS with the following triples:

skos:prefLabel
 a rdf:Property ;
 rdfs:label "preferred label" ;
 rdfs:subPropertyOf rdfs:label .

skos:altLabel
 a rdf:Property ;
 rdfs:label "alternative label" ;
 rdfs:subPropertyOf rdfs:label .

skos:hiddenLabel
 a rdf:Property ;
 rdfs:label "hidden label" ;
 rdfs:subPropertyOf rdfs:label .

The SKOS definition includes a number of other triples defining these properties, but

we will concentrate on these for this description.

Notice that each property has an rdfs:label, which provides a human readable version

of the name of each resource. Furthermore, each of these properties is declared to be of

type rdf:Property. Furthermore, each of these is declared to be a subproperty of

rdfs:label. What does this mean, in terms of OWL-Fast?

As we have already seen, rdfs:subPropertyOf propagates triples from the sub-

property to the super-property. In the first case, from any triple using skos:prefLabel as a

predicate, we can infer the same triple with rdfs:label as predicate instead. The same is

true for skos:altLabel and skos:hiddenLabel; in particular, in our UKAT example, we can

infer the following triples:

6

UKAT:EconomicCooperation
 rdfs:label "Economic co-operation" .
UKAT:EconomicCooperation
 rdfs:label "Economic cooperation" .
UKAT:EconomicIntegration
 rdfs:label "Economic integration" .
UKAT:EconomicPolicy
 rdfs:label "Economic policy" .
UKAT:EuropeanEconomicCooperation
 rdfs:label "European economic cooperation" .
UKAT:EuropeanIndustrialCooperation
 rdfs:label "European industrial cooperation" .
UKAT:IndustrialCooperation
 rdfs:label "Industrial cooperation" .
UKAT:Interdependence
 rdfs:label "Interdependence" .

That is, every SKOS label shows up as an rdfs:label. In some cases (e.g.,

UKAT:EconomicCooperation), more than one value for rdfs:label can be inferred. This

is perfectly legal in OWL-Fast (after all, rdfs:label is not an owl:FunctionalProperty),

even though its informal interpretation as the printable name of a resource is not clear.

SKOS uses this same pattern for many of the properties it defines; for each of them,

the sort of inference it supports is similar. So, for the seven documentation properties in

SKOS, six of them are subproperties of the seventh, thus:

core:definition rdfs:subPropertyOf core:note .
core:scopeNote rdfs:subPropertyOf core:note .
core:example rdfs:subPropertyOf core:note .
core:historyNote rdfs:subPropertyOf core:note .
core:editorialNote rdfs:subPropertyOf core:note .
core:changeNote rdfs:subPropertyOf core:note .

Similarly, SKOS defines three properties having to do with symbols,

7

core:altSymbol rdfs:subPropertyOf core:symbol .
core:prefSymbol rdfs:subPropertyof core:symbol .

Just as was the case for the SKOS label properties, any triple using one of the symbol

properties or documentation properties will entail a triple using core:symbol or core:note

respectively.

8.1.1 Semantic Relations in SKOS

SKOS defines three so-called Semantic Properties; these are the properties that relate

concepts to one another, using the familiar terms broader, narrower and related from

thesaurus standards. SKOS defines some simple constraints among these properties:

skos:broader
 a owl:TransitiveProperty ;
 owl:inverseOf skos:narrower ;
 rdfs:comment "Broader concepts are typically
rendered as parents in a concept hierarchy (tree)." ;
 rdfs:label "has broader" .

skos:narrower
 a owl:TransitiveProperty ;
 owl:inverseOf skos:broader ;
 rdfs:comment "Narrower concepts are typically
rendered as children in a concept hierarchy (tree)." ;
 rdfs:label "has narrower" .

skos:related
 a owl:SymmetricProperty;
 rdfs:label "related to" ;
 rdfs:subPropertyOf rdfs:seeAlso .

These properties take advantage of a handful of the constructs of OWL-Fast. We’ll

see how these work together in the UKAT example.

First, since skos:narrower is an inverse of skos:broader, we can make the following

inferences about UKAT concepts in Figure 8-1.

8

UKAT:EconomicPolicy core:narrower
 UKAT:EconomicCooperation .
UKAT:IndustrialCooperation core:broader
 UKAT:EconomicCooperation .
UKAT:EconomicIntegration core:broader
 UKAT:EconomicCooperation .
UKAT:EuropeanIndustrialCooperation core:broader
 UKAT:EconomicCooperation .
UKAT:EuropeanEconomicCooperation core:broader
 UKAT:EconomicCooperation .

Furthermore, since each of core:narrower is a owl:TransitiveProperty, we can infer

that every concept in this sample is narrower than the item at the “top” of the tree,

UKAT:EconomicPolicy:

UKAT:EconomicPolicy core:narrower
 UKAT:IndustrialCooperation ,
 UKAT:EconomicIntegration ,
 UKAT:EuropeanIndustrialCooperation ,
 UKAT:EuropeanEconomicCooperation .

Similar triples can be inferred (swapping subject for object, as usual) for the inverse

property, core:broader.

In the case of core:related, it is not defined as owl:TransitiveProperty, so we cannot

make inferences about chains of related items. This is probably as it should be; since it is

easy to imagine a chain of pairwise related terms in which the first term is not related to

the last term. However, we see that core:related is an owl:SymmetricProperty; this

means that we can make the following inference. If we assert that

9

UKAT:EconomicCooperation core:related
 UKAT:Interdependence .

Then we can infer that

UKAT:Interdependence core:related
 UKAT:EconomicCooperation .

8.1.1.1 Meaning of Semantic Relations

It is no accident that there is considerable similarity between the definitions of in

SKOS of skos:narrower and skos:broader, and the definitions in Section 7.2.2 XXX of

rdfs:subClassOf and superClassOf. Both of these pairs of properties are intended for

modeling hierarchies. In both cases, it is desirable that the hierarchies could be traversed

either “upward” or “downward”. In both cases, the intention of the hierarchical structure

is that the relationship be transitive, that is, narrower than narrower is narrower, and

subClassOf subClassOf is subClassOf.

There is one definition for subClassOf that has no corresponding condition in SKOS;

that is the semantic rule that says that if we have triples of the form

B rdfs:subClassOf C .
x rdf:type B .

Then we can infer that

x rdf:type C .

Because of this rule, there is no confusion about the interpretation of

rdfs:subClassOf; this rule makes it clear that C has more members (or at least, just as

many) as B; that is, C is the more encompassing of the two classes.

Since we have no such rule in SKOS, there is possibility for confusion; when we say

10

EconomicCooperation skos:broader EconomicPolicy .

Should we read this (in English) as “Economic Cooperation has broader category

Economic Policy,” or should we read it as “Economic Cooperation is broader than

Economic Policy”? There is nothing in the formal SKOS model to tell us which is which.

The relationship is expressed informally in the annotations on skos:broader and

skos:narrower, e.g., the labels “has broader” and “has narrower” respectively indicate

that the former interpretation is the intended one – economic cooperation has broader

term economic policy. It is important to keep this in mind when reading the SKOS

examples that follow in this book, where we will see triples like

:Milk skos:broader :Dairy .

For many people, this interpretation of broader is backwards from what they expect.

If there were an inference-based definition of the semantics of skos:broader (as there

is, for example, for rdfs:subClassOf), then the intended direction of this statement would

be explicit. There would be no need to rely on the interpretation of examples (like this

one for Milk and Dairy) to communicate which way the terms are intended to be used.

8.1.2 Special Purpose Inference

SKOS includes a special provision for implementing Collections of concepts.

Collections of terms are common in thesaurus and indexing standards. Consider the

following example from the W3C SKOS Core Guide.

A term index describes agricultural products, and includes several kinds of milk; cow

milk, goat milk, sheep milk and buffalo milk. There is a meaningful collection of these

concepts called “milk by source animal”. This practice of grouping concepts is common

practice in indexing and cataloguing. It is important to notice that according to the

11

common practice of professional cataloguers, the grouping “milk by source animal” is

itself not a concept in its own right; it is simply a grouping for concepts.

SKOS uses a class called skos:Collection and a property called skos:member to

express such situations, as shown in Figure 8-2.

8-2 "Milk by source animal" is a collection of four concepts related to milk.

The triples for Figure 8-2 are given in N3 as

agro:MilkBySourceAnimal a skos:Collection;
 rdfs:label "Milk by source animal ;
 core:member agro:CowMilk,
 agro:BuffaloMilk,
 agro:GoatMilk,
 agro:SheepMilk .

agro:BuffaloMilk a skos:Concept;
 skos:prefLabel "Buffalo milk .

agro:CowMilk a skos:Concept;
 skos:prefLabel "Cow milk" .

agro:GoatMilk a skos:Concept;
 skos:prefLabel "Goat milk" .

agro:SheepMilk a skos:Concept;
 skos:prefLabel "Sheep milk" .

The interest in this example comes when we examine what inferences we can draw

from such a construct. So far, we have only used skos:narrower to express that one term

12

has another as a narrower term. But what would it mean to this same notion of

skos:narrower to describe the relationship between a term and a collection? e.g.,

agro:Milk skos:narrower agroMilkBySourceAnimal .

SKOS does not model the answer to this question in OWL-Fast, but instead specifies

a special-purpose rule as part of the SKOS specification. If we have triples of the form

X skos:narrower C .
C skos:member Y .

Then we can infer the triple

X skos:narrower Y .

When we apply this rule to agro:Milk, we can infer that it has as narrower term each

of the kinds of milk in the collection agro:MilkBySourceAnimal, thus:

agro:Milk skos:narrower agro:BuffaloMilk .
agro:Milk skos:narrower agro:CowMilk .
agro:Milk skos:narrower agro:SheepMilk .
agro:Milk skos:narrower agro:GoatMilk .

The SKOS standard represents this constraint as a rule, rather than modeling it in

OWL-Fast. This is not surprising, since the constructs of OWL-Fast are not well-suited to

this problem. We shall see in Chapter 10XXX how further constructs in OWL can be

brought to bear on situations like this one.

8.1.3 Published Subject Indicators

SKOS includes support for the notion of a Published Subject Indicator, or PSI. The

idea of a PSI is that a community can agree on a particular publication that can act as a

unique identifier for a certain concept. For traditional, generic concepts like “Milk” or

“Economic Policy” it is unlikely that there will be a useful unique publication for the

concept. But for the results of standards bodies such publications are commonplace.

13

Examples include things like CDC disease listings, technical standards (like SKOS

itself!), acts of governments, etc. For instance, if two diseases have the same CDC listing,

then they are the same disease.

SKOS provides a property called skos:subjectIndicator to link a skos:Concept to a

published document. Since a PSI is intended as a unique identifier of a concept, it should

not be possible for two different concepts to share the same subjectIndicator. This

stipulation is quite simple to represent in OWL-Fast, as we have seen in section

7.6.2XXX, where we introduced owl:InverseFunctionalProperty. The SKOS

specification includes the triple

skos:subjectIndicator rdf:type owl:InverseFunctionalProperty .

This indicates that any two concepts that share the same PSI must therefore refer to

the same concept, unifying them in the knowledge organization system. For instance,

suppose that the document at http://www.usdoj.gov/foia/privstat.htm is the PSI for the US

Privacy Act of 1974. Then if we have concepts from two different knowledge

organization systems, e.g.,

policy:Privacy a skos:Concept;
 skos:subjectIndicator
 http://www.usdoj.gov/foia/privstat.htm .

gov:InfoAccess a skos:Concept ;
 skos:subjectIndicator
 http://www.usdoj.gov/foia/privstat.htm .

We can infer that these two concepts are indeed the same, i.e.,

gov:InfoAccess owl:sameAs policy:Privacy .

Any indexing application that utilizes the thesaurus can then respond accordingly;

for example, any items indexed under gov:InfoAccess will also be accessible under

policy:Privacy. This illustrates how the property skos:subjectIndicator plays an

14

important role in the utilization of SKOS on the semantic web, since it allows terms from

different vocabularies to be mapped to one another.

8.1.4 SKOS in action

SKOS is an example of a model on the Semantic Web; it models a particular

standard for how to represent thesauri. In this section, we have examined what the SKOS

model says about terms and concepts in a thesaurus, and how they can relate to one

another. But how is SKOS itself being used? What do we gain by representing a

thesaurus in SKOS?

The information explosion that we are familiar with on the web is taking place

elsewhere as well. Libraries around the world are interested in indexing their materials in

a way that will allow patrons to find information from all around the world. The United

Nations has been quite successful with a thesaurus called Agrovoc, that provides

multilingual indexing for materials concerning any aspect of agriculture. Not

surprisingly, member nations have their own indexes for agriculture. The National

Agriculture Library (NAL) of the United States also has an extensive thesaurus (in

English) for indexing agricultural materials.

When the United Nations pursued a project to map these thesauri together, they

needed a representation that would allow for terms from multiple sources to be

distinguished in a global way; that is, the Agrovoc word for “Ground Water” and the

NAL word for “Ground Water” must be managed separately, but it also must be possible

to represent the relationship between them. The use of URIs in RDF (and hence in

SKOS) is ideal for this job. SKOS itself provides a set of terms as described here, for

familiar thesaurus relationships broader and narrower. This makes it a straightforward

15

task to export each thesaurus in SKOS. In fact, both Agrovoc and the NAL had

independently sponsored SKOS exports of their thesauri. With these SKOS

representations in place, it was a straightforward matter to represent mappings between

the two vocabularies in RDF.

8.2 FOAF

FOAF (“Friend of a Friend”) is a format for supporting distributed descriptions of

people and their relationships. The name “Friend of a Friend” is intended to evoke the

fundamental relationship that holds in social networks; you have direct knowledge of

your own friends, but only through your network can you access the friends of your

friends.

FOAF works in the spirit of the AAA principle; anyone can say anything about any

topic. In the case of FOAF, the topics that anyone is usually saying things about are

people. Other things that are commonly related to what we might want to say about

people, e.g., Organizations (that people belong to), Projects (that people work on),

Documents (that people have created or that describe them) and Images (that depict

people), are also included in the core FOAF description. Information about a single

person is likely to be distributed across the web, and represented in different forms; on

their own webpage, a person is likely to list basic information about interests, current

projects, and some images. But further information will be available only on other pages;

a photo set taken at a party or conference could include a picture that depicts a person,

who has not listed that photoset in their own web page. A conference organizer could

include information about a paper that lists its authors, even if the authors themselves

might not have listed the paper on their own website. A laboratory or office might have a

16

page that lists all of its members. FOAF leverages the distributed nature of RDF to

provide a distributed representation of this information. Social networking sites have

begun to make information available in FOAF for web-scale distribution.

Given that there are a number of social networking websites available, and that each

one of them has a way to represent its members, information about them, and ways in

which they are connected to one another, one could well ask why there is a need for yet

another way to describe people and their social networks. The idea of FOAF is not to

replace any of these systems, but to provide a framework whereby this information can

be distributed. Furthermore, using RDF, FOAF provides a framework that is extensible;

since anyone can say anything about any topic, FOAF allows anyone to make novel

statements about people, projects, etc., and to relate these statements to other statements

already made.

FOAF leverages the AAA principle, as well as the distributed and extensible nature

of RDF in an essential way. At any point in time, FOAF is a work in progress; there are

vocabulary terms in FOAF whose semantics are defined only by natural language

descriptions in the FOAF “standard”; other terms have definitions defined in OWL-FAST

that relate them in a formal way to the rest of the description. FOAF is designed to grow

in an organic fashion, starting with a few intuitive terms, focusing their semantics as they

are used. There is no need to commit early on to a set vocabulary, since we can use

OWL-FAST to connect together new vocabulary and old vocabulary, once we determine

the desired relationship between them.

FOAF provides a small number of classes and properties as its starting point; these

make use of some of the basic constructs of OWL-Fast to maintain consistency and to

17

implement FOAF policies for information merging. FOAF is a fairly simple system for

describing people, the things they create and the projects they participate in. It is

primarily organized around three classes: foaf:Person, foaf:Group and foaf:Document.

8.2.1 People and Agents

While FOAF is primarily about people, some of the things we want to say about

people are true of other things as well; groups, companies, etc. So a foaf:Person is

defined as part of a compact hierarchy under the general grouping of foaf:Agent:

foaf:Person rdfs:subClassOf foaf:Agent .
foaf:Group rdfs:subClassOf foaf:Agent .
foaf:Organization rdfs:subClassOf foaf:Agent .

Many things we might say about a foaf:Person can hold for any foaf:Agent; in fact,

FOAF is quite liberal in this regard; most of the properties we will describe here for

people hold for agents in general. Details of exactly which properties are used for which

classes are available in the FOAF Vocabulary Specification http://xmlns.com/foaf/0.1/.

8.2.2 Names in FOAF

Probably the most essential thing that we know about a person is their name; FOAF

provides a number of vocabulary terms to describe the name of a person. Even something

as simple as a person’s name can be quite complex. FOAF begins with a simple notion of

name, which it sensible calls foaf:name.

foaf:name rdfs:domain owl:Thing .
foaf:name rdfs:subPropertyOf rdfs:label .

18

That is, anything in the world can have a name (including a foaf:Person), and that

name is also used as the printable label for that thing. For a foaf:Person, the name is

typically the full name of the person, like “William Shakespeare” or “Anne Hathaway”.

While the full name of a person is quite useful, there are parts of a person’s name

that are needed in some circumstances. foaf:firstName, foaf:givenname, foaf:family_name

and foaf:surname are four properties relating to names of people that are defined in

FOAF. Each of them has an intuitive meaning, but there are no formal semantics; the

meaning is given only in the prose descriptions in the standard, and by evolving

conventions of use. As FOAF evolves, it will need to encompass different cultures and

their use of names; does the given name always come first? Is a family name always the

surname? How do culture-specific names (for example, the “Christian name” that is still

used in some cultures) relate to other names? One of the advantages to basing FOAF on

RDF is that it is not necessary to resolve all of these issues, in order to begin the project

of marking up data using the FOAF vocabulary. The strategy taken by FOAF is to begin

by annotating a person’s name, while providing other naming vocabulary like surname,

firstname, givenname etc. Usage patterns will dictate which of these will turn out to be

useful. If it turns out that, say, two properties are used in exactly the same way, then this

observation can be cast as part of the standard by describing the relationship in OWL. For

example,

foaf:surname owl:equivalentProperty foaf:family_name .

8.2.3 Nicknames and Online names

Since FOAF is primarily used on the Web, it is expected that many of the people

FOAF will be used to describe will be active in various internet communities. For

19

instance, it is likely that a FOAF Person will have a screen name on some online chat

service. FOAF currently identifies foaf:aimChatID, foaf:icqChatID, foaf:msnChatID, and

foaf:yahooChatID. A recent addition includes foaf:jabberID as well. In the spirit of

extensibility of FOAF, new ID properties can be added on an as-needed basis. While

some part of the semantics of these properties is given by their natural language

descriptions (which connect foaf:yahooChatID to the chat service Yahoo!), FOAF also

makes a formal connection between these properties. In particular, all of them are sub-

properties of a single property, foaf:nick:

foaf:aimChatID rdfs:subPropertyOf foaf:nick .
foaf:icqChatID rdfs:subPropertyOf foaf:nick .
foaf:msnChatID rdfs:subPropertyOf foaf:nick .
foaf:yahooChatID rdfs:subPropertyOf foaf:nick .
foaf:jabberID rdfs:subPropertyOf foaf:nick .

Following the rules of rdfs:subPropertyOf from chapter 6XXX, this means that any

foaf:Person who is active in chat spaces is likely to have multiple values for the property

foaf:nick, that is to have multiple nicknames. They can, of course, have further

nicknames as well. For instance, when William Shakespeare became active in internet

chat rooms, from a FOAF point of view, all those screen names are also nicknames:

Shakespeare foaf:aimChatID “Willie1564” .
Shakespeare foaf:msnChatID “TempestMan” .
Shakespeare foaf:nick “Willie1564” .
Shakespeare foaf:nick “TempestMan” .

Of course, we can still assert a nickname for the poet and playwright, even if he

doesn’t use it as a screen name anywhere:

20

Shakespeare foaf:nick “The Bard of Avon” .

8.2.4 Online persona

The Internet provides a number of ways for a person to express himself, and FOAF

is under constant revision to provide properties to describe these things. A person is

likely to have an electronic mailbox; FOAF provides a property foaf:mbox for this

purpose. Many people maintain a number of web pages describing parts of their lives;

many people have personal home pages, some have home pages at their workplace or at

their school (or both!). Their workplaces themselves can have homepages, etc. FOAF

uses the same strategy for these properties as it does for names; it provides a wide array

of properties, defined informally (by natural language descriptions in the standard).

foaf:homepage – relates a person to their primary homepage. This property applies

to anything in FOAF, not just to people.

foaf:workplaceHomepage – the homepage of the workplace of a person. Anything

can have a homepage (even an employer!), but only a foaf:Person can have a

workplaceHomepage.

foaf:workInfoHomepage – the homepage of a person at their workplace. Such a page

is usually hosted by a person’s employer, but is about the person’s own work there.

foaf:schoolHomepage – the homepage of the school that a foaf:Person attended.

As the internet provides new means of expression, FOAF keeps up:

foaf:weblog – the address of the web blog of a person.

All of these properties specify instances of the class foaf:Document; that is, a web

page is a foaf:Document, a weblog is a foaf:Document, etc.

21

8.2.5 Groups of people

One of the interesting things about people is the groups they belong to. FOAF

provides a class called foaf:Group to define these groups. A group is connected to its

members via a property called, appropriately enough, foaf:member. A foaf:Group is

defined quite loosely; any grouping of people can be described this way. For instance, we

could define a group called EnglishMonarchy as follows:

:English_Monarchy
 a foaf:Group ;
 foaf:name "English Monarchy” ;
 foaf:homepage “http://www.monarchy.com/” ;
 foaf:member :William_I, :Henry_I, :Henry_II,
 :Elizabeth_I, :Elizabeth_II .

A group in FOAF is an instance, in particular, an individual of type foaf:Group. As

such, there are a number of properties that can describe it, like foaf:name (as we see

here). In fact, a foaf:Group has a lot in common with a foaf:Person; it can have a chat ID,

a nickname, an email box, a homepage or even a weblog.

But it is also useful to consider the members of a group as instances of a class; that

is, to related the instance of foaf:Group to an rdfs:Class. For this purpose, FOAF

provides a link from a group to a class, called foaf:membershipClass. Suppose that the

membership class for English_Monarchy is called Monarch; this connection is expressed

in FOAF with the triple

:English_Monarchy foaf:membershipClass :Monarch .

The members of the group Enlish_Monarchy all have type Monarch:

22

:William_I a :Monarch .
:Henry_I a :Monarch .
:Henry_II a :Monarch .
:Elizabeth_I a :Monarch .
:Elizabther_II a :Monarch.

Ideally, all of these triples should be maintained automatically; that is, any individual

of type Monarch should appear a member of the group English_Monarchy, and every

member of the group English_Monarchy should have Monarch as a type. FOAF makes

this stipulation as part of the standard. We will see in Chapter 10 how to use the more

advanced capabilities of OWL to build a model from which we can infer these triples.

The distinction between the instance English_Monarchy and the class Monarch is a

subtle one; the class Monarch is a type in RDFS; as such it refers to schematic things

about monarchs – property domains, subclasses, etc. English_Monarchy, on the other

hand, refers to the institution of the monarchy itself, which refers to things like this

history of the monarchy, web pages and books about the monarchy, and so on.

In our examples so far, we have been kept the world of classes separate from the

world of instances; the only relation between an instance and a class has been the rdf:type

property. The intuition behind foaf:membershipClass is that it indicates a class, whose

instances are exactly the same as the members of the group. The expression of this kind

of relationship, in which we sometimes wish to view something as an instance (e.g.,

English_Monarchy, an instance of the class foaf:Group) and sometimes as a class (e.g.,

the class Monarch, representing all the instances that are foaf:member of that group), is

an example of a practice called meta-modeling. We will see more about meta-modeling

when we learn about the rest of the OWL language, and we will see how we can use

meta-modeling constructs in OWL to formalize the relationship between a foaf:Group

and its foaf:membershipClass.

23

8.2.6 Things people make and do

Interesting people create things; they write books, publish web pages, create works

of art, found companies, and start organizations. FOAF provides two properties to relate

people to their creations: foaf:made and foaf:maker. They are inverses of one another,

and have relate a foaf:Agent to an owl:Thing as follows:

foaf:made rdfs:domain foaf:Agent .
foaf:made rdfs:range owl:Thing .
foaf:maker rdfs:domain owl:Thing .
foaf:maker rdfs:range foaf:Agent .
foaf:made owl:inverseOf foaf:maker .

That is, anything in the describable universe is fair game for being made by some

agent. Even another agent could have a foaf:maker!

If a person is an author, then they are likely to have publications to their credit. The

property foaf:publications relates a foaf:Person to any foaf:Document they have

published. Interestingly, FOAF does not specify that a person has foaf:made any of their

foaf:publications. In the spirit of the AAA principle, if we were to decide to make such a

statement, we could do so simply by saying

foaf:publications rdfs:subPropertyOf foaf:made .

8.2.7 Identity in FOAF

The main goal of FOAF is to apply the AAA principle to describing networks of

people; anyone can contribute descriptions about anyone. But this leads to a problem; it is

easy enough for me to describe myself; I can publish a document that says whatever I

wish to make known. If someone else wants to contribute information about me (say, for

example, that the publisher of this book wants to add the information that I am an author),

24

how will they refer to me? Or if I have several profiles on different sites that I would like

to merge together, how can I link them to describe the one thing that is “me”?

The RDF answer to this question is quite simple, but not really adequate for the uses

of FOAF. RDF uses URIs to denote the things it describes – that means that I should have

a URI that denotes me, and anyone who wants to make a comment about me can make it

using that URI. This is a simple, elegant, and standard solution to this problem.

The problem arises in the adoption of FOAF. When someone makes their first FOAF

page, how do they determine their own URI? Do they just make it up? It just isn’t very

common on the web for people to have their own personal URIs to describe themselves.

In order to lower the barriers to adopting FOAF, there needs to be a way in which people

can refer to one another that uses some part of the internet infrastructure that is already

ubiquitous and familiar. FOAF needs to utilize some pre-existing way to identify

individuals. Is there any identifying marker that everyone on the internet already has, and

is already familiar with?

The clearest answer to this puzzle is email; just about anyone who is described on the

web in any way at all has an email address. Furthermore, it is quite rare that two people

share the same email address. Rare enough that for the purposes of FOAF, email can

serve as a unique identifier for people on the web. Note that it isn’t a problem if someone

has two or more email addresses or if one email address is valid only for a limited period

of time. All FOAF requires of the email address is that another person doesn’t share it

(either simultaneously or later on).

We can express this constraint in plain language by saying simply that two people

who share the same email address are in fact not two distinct people at all, but instead are

25

the same person. But as we have already seen in Section 7.6.2XXX, OWL-FAST has a

way to formalize this relationship. When a property uniquely identifies an individual, we

say that the property is an owl:InverseFunctionalProperty. So in FOAF, we can express

the central role that foaf:mbox plays in identifying individuals with the single triple

foaf:mbox rdf:type owl:InverseFunctionalProperty .

Once we identify foaf:mbox as an owl:InverseFunctionalProperty, we realize that

similar statement can be made about a number of the properties we use to describe

people; it is unusual for two people to share a YahooChatID, or an AIMChatID. In fact,

all of the following properties in FOAF are owl:InverseFunctionalProperties:

foaf:aimChatID rdf:type owl:InverseFunctionalProperty .
foaf:homepage rdf:type owl:InverseFunctionalProperty .
foaf:icqChatID rdf:type owl:InverseFunctionalProperty .
foaf:jabberID rdf:type owl:InverseFunctionalProperty .
foaf:mbox rdf:type owl:InverseFunctionalProperty .
foaf:msnChatID rdf:type owl:InverseFunctionalProperty .
foaf:weblog rdf:type owl:InverseFunctionalProperty .
foaf:yahooChatID rdf:type owl:InverseFunctionalProperty .

Using the foaf:mbox (and similar properties) as identifiers of individuals solves the

technical problem of identifying individuals, using some pre-existing identification, but it

raises another problem; publishing the email address for a person can be seen as a

violation of privacy, since email addresses (and chat IDs) can be used to pester or even

attack someone by sending unwanted, offensive or just bulky mail. So if we want to

apply the AAA principle to William Shakespeare, and we know that he uses the email

address Shakespeare@gmail.com, we can refer to him as “the person with email

‘Shakespeare@gmail.com’” (using a blank node, as we did for Shakespeare’s inspiration

in section 3.5).

26

[foaf:mbox “Shakespeare@gmail.com”]

But when we do this, we publish his email address in plain text for information

vandals to steal and use; this isn’t a very polite thing to do to someone we know and

respect. For this reason, FOAF also offers an obfuscated version of foaf:mbox, called

foaf:mbox_sha1sum. It indicates the result of applying a hashing function called SHA-1

to the email address. The SHA-1 function is publicly available but very difficult to

reverse. We apply the algorithm to Shakespeare’s email address to get the obfuscated

string “f964f2dfd4784fe9d68ada960099e0b592e16a95”. Now we can refer to him using

this value:

[foaf:mbox_sha1sum “f964f2dfd4784fe9d68ada960099e0b592e16a95”]

without compromising his email privacy.

Unfortunately, FOAF does not provide a standard way to obfuscate the other

identifying properties like foaf:aimChatID, foaf:yahooChatID, etc.

8.2.8 It’s not what you know, it’s who you know

The key to FOAF as a social networking system is the ability to link one person to

another. FOAF provides a single, high-level property for this relationship, called

foaf:knows. The idea behind foaf:knows is simple; one person knows another one, who

knows more people, and so on, forming a network of people knowing people. There isn’t

a lot of inferencing going on with foaf:knows; the only triples defined for it are

foaf:knows rdfs:domain foaf:Person .
foaf:knows rdfs:range foaf:Person .

that is, foaf:knows just links one foaf:Person to another.

The lack of inferencing over foaf:knows is by design; the design of foaf:knows is

intentionally vague, to indicate some relationship between people. Such a relationship

27

could be concluded informally from other information, for instance, co-authors can

usually be assumed to know one another. And while it is usual to think that if one person

knows another, that the relationship is mutual, the FOAF designers intentionally left out

the assertion of foaf:knows as an owl:SymmetricProperty, since there might even be some

disagreement about whether one person knows another.

Despite its vague definition, foaf:knows provides the infrastructure for using FOAF

for social networking, as it links one person to the next and then to the next and so on . . .

8.3 Lessons Learned

SKOS and FOAF demonstrate how a fairly simple set of modeling constructs can be

used to create extensible, distributed information networks. The both take advantage of

the distributed nature of RDF to allow extension to a network of information to be

distributed across the web. Both of them rely on the inferencing structure of OWL-FAST

to add completeness to their information structure. Both of them make use of

owl:InverseFunctionalProperty to determine identity of key elements.

While they are similar in these ways, FOAF and SKOS are organized very

differently in terms of how they support extension by their expected user communities.

FOAF takes something of an evolutionary approach to information extension. Many

concepts have a broad number of terms (like the several variants of “name” that we saw

in section 8.2.2). FOAF can be extended as new features are needed; for instance,

foaf:weblog was not as important before blogging became fashionable; in recent times, it

has nearly surpassed the more classical foaf:homepage in importance.

SKOS, in contrast, takes a much more orderly approach to extension. The SKOS

standard comes in three parts; the SKOS Core, which has been described here, SKOS

28

Mapping, which includes vocabulary fro mapping vocabularies from different sources,

and the SKOS Extensions, for particular vertical applications of SKOS. The SKOS Core

is intended to be a sort of interlingua for thesauri, and has been designed by a small

committee in an attempt to consolidate the fundamentals of other thesaurus systems into a

single semantic web standard. The other two documents import the Core, and build

further semantics on top of it.

The difference in these two approaches becomes more apparent when we think about

how they will be extended; FOAF takes very seriously the AAA slogan, to the point that

the actual preferred parts of the standard will be determined to a large extent by its use.

SKOS, on the other hand, has a fairly stable core, which has been designed by an

informed committee, who have performed a detailed commonality/variability analysis of

extant vocabulary systems. The architecture of SKOS has been determined and

published, and serves as a roadmap to development of the standard.

The technical structure of RDF supports both of these modes. The free extension

style of FOAF and the orderly layering of SKOS are accomplished using the same graph

overlay mechanism of RDF; the difference is in how the overlay is organized and

governed. Neither approach is inherently superior to the other; each of them

accomplishes certain goals that are of importance to each of these projects.

8.4 Fundamental Concepts

The following fundamental concepts were introduced in this chapter:

foaf: Namespace for a system of representation of social network information; short

for “friend of a friend”

29

skos: Namespace for a system of representation for information management SKOS

stands for “Simple Knowledge Organization System”.

Meta-modeling: Generally speaking, the craft of building a model that describes

another model. A specific example is the practice of representing a class in a model as an

individual member of another class. FOAF does this explicitly with the

foaf:membershipClass property that links an individual of type foaf:Group to the Class of

all members of the group.

 [UKAT] The UK Archival Thesaurus. See (http://www.ukat.org.uk/)

