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7 OWL-Fast:  

RDFS provides a very limited set of inference capabilities which, as we have seen, 

have considerable utility in a semantic web setting for merging information from multiple 

sources. In this chapter, we take the first step toward the Web Ontology Language OWL, 

in which much more elaborate constraints on how information is to be merged can be 

specified.  We have selected a particular set of OWL constructs to present at this stage.  

This set was selected to satisfy a number of goals: 

• Pedagogically, these constructs constitute a gentle addition to the constructs 

that are already familiar from RDFS, increasing the power of the language 

without making a large conceptual leap from RDFS,  

• Practically, we have found that this set of OWL constructs has considerable 

utility in the information integration projects we have done.  In fact, it is 

much easier to find and describe case studies using RDFS plus this set of 

OWL constructs than it is to find case studies that use RDFS on its own, 

• Computationally, this subset of OWL can be implemented using a wide 

variety of inferencing technologies, lessening the dependency between the 

Semantic Web and any particular technology. 

For these reasons, we feel that this particular subset will have value beyond the 

pedagogical value in this book.  We call this subset of OWL OWL-Fast, because we see a 

trend amongst vendors of Semantic Web tools of determining a subset of OWL that is at 

the same time useful and can be implemented quickly. We have identified this particular 

subset via an informal poll amongst cutting-edge vendors and from our own experience 

with early adopters of Semantic Web technology.  
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Just as was the case for RDFS, OWL-Fast is expressed entirely in RDF.  The only 

distinction is that there are a number of resources, all in the namespace owl: as described 

in section Error! Reference source not found.. The meaning of these resources is 

specified by the rules that govern the inferences that can be made from them.  

In the case of RDFS, we saw how the actions of an inference engine could be used to 

combine various features of the schema language in novel ways. This trend will continue 

for OWL-Fast, but as you might expect, the more constructs we have to begin with, the 

more opportunity we have for useful and novel combinations.  

7.1 Inverse 

The names of many of the OWL constructs come from corresponding names in 

mathematics. Despite their mathematical names, they also have a more common, 

everyday interpretation.  The idea owl:inverseOf is a prime example; if a relationship, say 

hasParent is interesting enough to mention in a model, then it’s a good bet that another 

relationship, say hasChild, is also interesting.  Because of the evocative names hasParent 

and hasChild, you can guess the relationship between them. The OWL construct 

owl:inverseOf makes the relationship between hasParent and hasChild explicit, and 

describes precisely exactly what it means. 

In mathematics, the inverse of a function f (usually written as f -1) is the function that 

satisfies the property that if f(x)=y, then the f -1(y)=x. Similarly in OWL, the inverse of a 

property is another property that reverses its direction.  

To be specific, we look at the formal meaning of owl:inverseOf. In OWL, as in 

RDFS, the meaning of any construct is given by the inferences that can be drawn from it. 

If we have the following triples 
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P owl:inverseOf Q . 
x P y . 
 

Then we can infer that: 

y Q x . 
 

In the examples in the book, we have already seen a number of possibilities for 

inverses, even though we haven’t used them so far. In our Shakespeare examples, we 

have the triples 

lit:Shakespeare lit:wrote lit:Macbeth . 
lit:Macbeth lit:setIn geo:Scotland . 
 

If, in addition to these triples, we also state some inverses, e.g., 

lit:wrote owl:inverseOf lit:writtenBy . 
lit:settingFor owl:inverseOf lit:setIn . 

then we can infer that  

lit:Macbeth lit:writtenBy lit:Shakespeare . 
geo:Scotland lit:setingFor lit:Macbeth . 
 

While the meaning of owl:inverseOf is not difficult to describe, what is the utility of 

such a construct in a modeling language?  After all, the effect of inverseOf can be 

achieved just as easily by writing the query differently.  For instance, if we want to know 

all the plays that are setIn Scotland, we can use the inverse property settingFor in our 

query pattern, e.g.,  

{geo:Scotland lit:settingfor ?play . } 

Because of the semantics of the inverse property, this will give us all plays that were 

setIn Scotland.   

But we could have avoided the use of the inverse property, and simply written the 

query as  
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{?play lit:setIn geo:Scotland . } 

We get the same answers, and we don’t have any need for an extra construct in the 

modeling language. 

While this is true, owl:inverseOf nevertheless does have considerable utility in 

modeling, based on how it can interact with other modeling constructs. In the next 

challenge, we’ll see how the Property Union challenge from section   Error! Reference 

source not found. can be extended using inverses. 

7.1.1 Challenge: Integrating data that doesn’t want to be integrated 

 In the Property Union challenge from section  Error! Reference source not found., 

we had two properties, borrows and checkedOut.We were able to combine them under a 

single property by making them both rdfs:subPropertyOf the same parent property, 

hasPosession. We were fortunate that the two sources of data happened to link a Patron 

as the subject to a Book as the object (i.e., they had the same domain and range). Suppose 

instead that the second source was instead an index of books, and for each book there was 

a field specifying the patron the book was signedTo (i.e., the domain and range are 

reversed).   

CHALLENGE 

How can we merge signedTo and borrows, in a way analogous to how we merged 

borrows and checkedOut, given that signedTo and borrows don’t share domains and 

ranges? 
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SOLUTION 

The solution involves a simple use of owl:inverseOf to specify two properties for 

which the domain and range do match, as required for the merge. We define a new 

property, say signedOut, as the inverse of signedTo, as follows: 

signedTo owl:inverseOf signedOut . 

Now we can use the original Property Union pattern to merge signedOut and 

borrows into the single hasPossession property: 

signedOut rdfs:subPropertyOf hasPossession . 
borrows rdfs:subPropertyOf hasPossession . 

So, if we have some data expressed using signedTo, along with data expressed with 

borrows, as follows: 

Amit borrows MobyDick . 
Marie borrows Orlando . 
LeavesOfGrass signedTo Jim . 
WutheringHeights signedTo Yoshi . 

Then with the rule for inverseOf, we have the additional triples 

Jim signedOut LeavesOfGrass . 
Yoshi signedOut WutheringHeights. 

and with subPropertyOf, we have  

Amit hasPossession MobyDick . 
Marie hasPossession Orlando . 
Jim hasPossession LeavesOfGrass . 
Yoshi hasPossession WutheringHeights. 

as desired.  

SOLUTION (alternative) 

There is a certain asymmetry in this solution; the choice to specify an inverse for 

signedTo rather than for hasPossession was somewhat arbitrary. Another solution, also 
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utilizing owl:inverseOf and rdfs:subPropertyOf and just as viable as the first, is as 

follows: 

signedTo rdfs:subPropertyOf possessedBy . 
borrows rdfs:subPropertyOf hasPossession . 
possessedBy owl:inverseOf hasPossession . 

These statements use the same rules for owl:inverseOf and rdfs:subPropertyOf, but 

in a different order, resulting in the same hasPossession triples.  Which solution is better 

in what situations?  How can we tell which to use? 

If all we were concerned with was making sure that the inferences about 

hasPossession will be supported, then there would be no reason to prefer one solution 

over the other. But modeling in the semantic web is not just about supporting desired 

inferences, but also about supporting reuse. Might someone else want to use this model, 

in a slightly different way? A future query is just as likely to be interested in 

hasPossession as possessedBy. Furthermore, we might in the future wish to combine 

hasPossession (or possessedBy) with another property.  For this reason, one might choose 

to use both solutions together, by using inverseOf and subPropertyOf together in a 

systematic way. That is, by specifying inverses for every property, regardless of the 

subPropertyOf level.  In this case, this results in  

signedTo owl:inverseOf signedOut . 
signedTo rdfs:subPropertyOf possessedBy . 
signedOut rdfs:subPropertyOf hasPossession . 
lentTo owl:inverseOf borrows . 
lentTo rdfs:subPropertyOf possessedBy . 
borrows rdfs:subPropertyOf hasPossession . 
possessedBy owl:inverseOf hasPossession . 

The systematicity of this structure can be more readily seen in figure 7-1. 
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7-1 Systematic combination of inverseOf and subPropertyOf 

 

The most attentive reader might have one more concern about the systematicity of 

figure 7-1. In particular, the selection of which properties are the subject of owl:inverseOf 

and which are the object (in the diagram, which ones go on the left or on the right of the 

diagram) is arbitrary. Shouldn’t there be three more owl:inverseOf triples, pointing from 

right to left? Indeed there should, but there is no need to assert these triples, as we shall 

see in the next challenge. 

7.1.2 Challenge: Using the modeling language to extend the 

modeling language 

It is not unusual for beginning modelers to look at the list of constructs defined in 

OWL, and to say, “There is a feature of the OWL language that I would like to use, that 

is very similar to the ones that are included.  Why did they leave it out?  I would prefer to 

build my model using a different set of primitives.” In many cases, the extra language 

feature that they desire is actually already supported by OWL, as a combination of other 

features.  It is a simple matter of using these features in combination.  
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CHALLENGE 

RDFS allows me to specify that one class is a subClassOf another, but I prefer to 

think the other way around (perhaps because of the structure of some legacy data I want 

to work with), and specify that something is superClassOf something else. That is, I want 

the parent class to be the subject of all the definitional triples.  Using my own namespace 

myowl: for this desired relation, I would like to have the triples look like this: 

Food myowl:superClassOf BakedGood; 
     myowl:superClassOf Confectionary; 
     myowl:superClassOf PackagedFood; 
     myowl:superClassOf PreparedFood; 
     myowl:superClassOf ProcessedFood . 

If we instead use rdfs:subClassOf, all the triples go the other way around; Food will 

be the object of each triple, and all the types of Food will be the subjects.  

Since OWL does not provide a superClassOf resource (or to speak more correctly, 

OWL does not define any inference rules that will provide any semantics for a 

superClassOf resource), what can we do? 

SOLUTION 

What do we want myowl:superClassOf to mean?  For every triple of the form 

P myowl:superClassOf Q . 

We want to be able to infer that 

Q rdfs:subClassOf P . 

This can be accomplished simply by declaring an inverse: 

myowl:superClassOf owl:inverseOf rdfs:subClassOf . 

It is a simple application of the rule for owl:inverseOf to see that this accomplishes 

the desired effect. Nevertheless, this is not a solution that many beginning modelers think 

of. It seems to them that they have no right to modify or extend the meaning of the OWL 
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language; that they cannot make statements about the OWL and RDFS resources (like 

rdfs:subClassOf). But remember the AAA slogan of RDF: Anyone can say Anything 

about Any Topic.  In particular, a modeler can say things about the resources defined in 

the standard.   

In fact, we can take this slogan so far as to allow a modeler to say 

rdfs:superClassOf owl:inverseOf rdfs:subClassOf . 

This differs from the previous triple in that the subject is a resource in the (standard) 

RDFS namespace.  The RDF Slogan allows a modeler to say this, and indeed, there is 

nothing in the standards that will prevent it.  However, referring to a resource in the 

RDFS namespace is likely to suggest to human readers of the model that this relationship 

is part of the RDFS standard. Since one purpose of a model is to communicate to other 

human beings, it is generally not a good idea to make statements that are likely to be 

misleading, so we do not endorse this practice.  

Selecting namespaces for resources that extend the capabilities of the OWL language 

is a delicate matter; in the next chapter, we will examine a case study in which this has 

been done in a careful way.  

7.1.3 Challenge: The marriage of Shakespeare 

In section 4.5 XXX we lamented that even though we had asserted that Anne 

Hathaway had married Shakespeare, that we did not know that Shakespeare had married 

Anne Hathaway. We are now in a position to remedy that.  

CHALLENGE 

How can we infer marriages in the reverse direction from which they are asserted? 
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SOLUTION 

Simply declare bio:married to be it own inverse, thus: 

bio:married owl:inverseOf bio:married . 

Now any triple that uses bio:married will automatically be inferred to hold in the 

other direction.  In particular, now when we assert 

bio:AnneHathaway bio:married lit:Shakespeare . 

we can infer that  

lit:Shakespeare bio:married bio:AnneHathaway . 

This pattern of self-inverses is so common, that it has been built into OWL using a 

special construct called owl:SymmetricProperty. 

7.2 Symmetric Properties 

owl:inverseOf relates one property to another. The special case in which these two 

properties are the same (as was the case for bio:married for the Shakespeare example) is 

common enough that the OWL committee has provided a special name for it, 

owl:SymmetricProperty. Unlike owl:inverseOf, which is a property that relates two other 

properties, owl:SymmetricProperty is just an aspect of a single property, and is expressed 

in OWL as a Class. We express that a property is symmetric in the same way as we 

express membership in any class, i.e., 

P rdf:type owl:SymmetricProperty . 

  As usual, the meaning of this statement is given by the inferences that can be drawn 

from it. From this triple, we can infer that 

P owl:inverseOf P . 

So, in the case of marriage of Shakespeare, we can assert  
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bio:married rdf:type owl:SymmetricProperty . 

7.2.1 Using  OWL to extend OWL 

As we describe more and more of the power of the OWL modeling language, there 

will be more and more opportunities to define at least some aspects of a new construct in 

terms of previously defined constructs. We can use this method to streamline our 

presentation of the OWL language. 

We have seen a need for this already in figure 7-1, in which we noticed that we had 

expressed all of our inverses in one direction, while we observe that we really need to 

have them go both ways, as shown in figure 7-2.  

 
7-2 Systematic combination of inverseOf and subPropertyOf; contrast figure 7-1, with one-
directional inverses. 
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We asserted the triples from left to right, namely 

possessedBy owl:inverseOf hasPossession . 
signedTo owl:inverseOf signedOut . 
lentTo owl:inverseOf borrows . 

We would like to be able to infer the triples from right to left, namely 

hasPossession owl:inverseOf possessedBy. 
signedOut owl:inverseOf signedTo. 
borrows owl:inverseOf lentTo. 

CHALLENGE 

How can we infer all of these triples without having to assert them? 

SOLUTION 

Since we want owl:inverseOf to work in both directions, this can be done easily by 

asserting that owl:inverseOf is its own inverse, thus: 

owl:inverseOf owl:inverseOf owl:inverseOf . 

 You might have had to do a double-take to read that triple, that owl:inverseOf is its 

own inverse. Fortunately, we now have a more readable and somewhat more 

understandable way to say this, namely 

owl:inverseOf rdf:type owl:SymmetricProperty . 

In either case, we get the inferences we desire for figure 7-2, in which the inverses 

point both ways.  This also means that all the inferences in section 7.1.1, in both 

directions, will always be found.  

7.3 Transitivity 

In mathematics, a relation R is said to be transitive if R(a,b) and R(b,c) implies 

R(a,c). The same idea is used for the OWL construct owl:TransitiveProperty. Just like 
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owl:SymmetricProperty, owl:TransitiveProperty is a class of properties, so a model can 

assert that a property is a member of the class 

P rdf:type owl:TransitiveProperty . 

The meaning of this is given by a somewhat more elaborate rule than we have seen 

so far in this chapter.  Namely, if we have two triples of the form 

X P Y . 
Y P Z . 

we can infer that 

X P Z .  

Notice that there is no need for even more elaborate rules like 

A P B . 
B P C . 
C P D . 

Implies 

A P D . 

since this conclusion can be reached by applying the simple rule over and over again.  

Some typical examples of transitive properties include ancestor/descendant (if 

Victoria is an ancestor of Edward, and Edward is an ancestor of Elizabeth, then Victoria 

is an ancestor of Elizabeth), and containment (if Osaka is in Japan and Japan is in Asia, 

then Osaka is in Asia).   

7.3.1 Challenge: Relating parents to ancestors 

A model of genealogy will typically include notions of parents as well as ancestors, 

and we’d like them to fit together. But parents are not transitive (my parents’ parents are 

not my parents), while ancestors are.  
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CHALLENGE 

Allow a model to maintain consistent ancestry information, given parentage 

information.  

SOLUTION  

Start by defining the parent property to be a subPropertyOf the ancestor property, 

thus: 

:hasParent rdfs:subPropertyOf :hasAncestor . 

 Then declare ancestor only to be a transitive property: 

:hasAncestor rdf:type owl:TransitiveProperty . 

Let’s see how this works on some examples.  

:Alexia :hasParent :WillemAlexander . 
:WillemAlexander :hasParent :Beatrix . 
:Beatrix :hasAncestor :Wilhelmina . 

Because of the subPropertyOf relation between hasParent and hasAncestor, and the 

fact that hasAncestor is a TransitiveProperty, we can infer that 
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Alexia hasAncestor WillemAlexander . 
WillemAlexander hasAncestor Beatrix . 
Alexia hasAncestor Beatrix . 
WillemAlexander hasAncestor Wilhelmina . 
Alexia hasAncestor Wilhelmina . 

Information about the heritage is integrated, regardless of whether it originated with 

hasParent or hasAncestor. Information about hasParent, on the other hand, is only 

available as it was directly asserted, as it was not declared to be transitive. The results of 

this inference are shown in Figure 7-3. 

 
Figure 7-3. Inferences from transitive properties. 

7.3.2 Challenge: Layers of relationships 

Sometimes it can be somewhat controversial, whether a property is transitive or not. 

For instance, the relationship that is often expressed by the words “part of” in English is 

sometimes transitive (a piston is part of the engine, the engine is part of the car; is the 

piston part of the car?) and sometimes not (Mick Jagger’s thumb is part of Mick Jagger, 

and Mick Jagger is part of The Rolling Stones.  Is Mick Jagger’s thumb part of The 
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Rolling Stones?). In the spirit of anticipating possible uses of a model, it is worthwhile to 

support both points of view, whenever there is any chance that controversy might arise.  

CHALLENGE 

Simultaneously maintain transitive and non-transitive versions of the partOf 

imformation.  

SOLUTION 

Define two versions of the partOf property, in different namespaces, with one a 

subPropertyOf the other, with the superproperty declared as transitive: 

dm:partOf rdfs:subPropertyOf gm:partOf . 
gm:partOf rdf:type owl:TransitiveProperty . 

Depending on which interpretation of partOf any particular application needs, it can 

query the appropriate property. For those who prefer to think that Mick Jagger’s thumb is 

not part of the Rolling Stones, the original dm:partOf property is useful.  For those who 

instead consider that Mick Jagger’s Thumb is a part of the Rolling Stones, the transitive 

superproperty gm:partOf is appropriate. 

 
Figure 7-4. Different interpretations of partOf. 

7.3.3 Managing networks of dependencies 

The same modeling patterns we have been using to manage relationships (like 

ancestry) or set containment (like part of) can be used just as well in a very different 
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setting, namely, to manage networks of dependencies.  In the following series of 

challenges, we will see how the familiar constructs of rdfs:subPropertyOf, owl:inverseOf 

and owl:TransitiveProperty can be combined in novel ways to model important aspects 

of such networks.  

A common application of this idea is in workflow management. In a complex 

working situation, a variety of tasks must be repeatedly performed in a set sequence. The 

idea of workflow management is that the sequence can be represented explicitly, and the 

progress of each task tracked in that sequence. Why would someone want to model 

workflow in a semantic web? For the same reason one wants to put anything on the web 

– so that parts of the workflow can be shared with others, encouraging reuse, review and 

publication of work fragments.  

Real workflow specifications are far too detailed to serve as examples in a book, so 

we will use a simple example to show how it works. Let’s make some ice cream, using 

the following recipe: 

Slice a vanilla bean lengthwise, and scrape the contents into 1 cup of 

heavy cream. Bring the mixture to a simmer, but do not boil.  

While the cream is heating, separate three eggs.  Add ½ cup white 

sugar, and beat until fluffy. Gradually add the warm cream, beating 

constantly. Return the custard mixture to medium heat, and cook until 

mixture leaves a heavy coat on the back of a spatula.  Chill well. 

Combine custard with 1 cup whole milk, and turn in ice cream freezer 

according to manufacturer’s instructions.  
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First, let’s use a property dependsOn to represent the dependencies between the 

steps, and define its inverse enables, since each step enables the next in the correct 

execution of the workflow: 

:dependsOn owl:inverseOf :enables . 

Now we can define the dependency structure of the recipe steps: 

:SliceBean :enables :HeatCream . 
:SeparateEggs :enables :AddSugar . 
:AddSugar :enables :BeatEggs 
:BeatEggs :enables :GraduallyMix . 
:HeatCream :enables :GraduallyMix . 
:GraduallyMix :enables :CookCustard . 
:CookCustard :enables :Chill . 
:Chill :enables :AddMilk . 
:AddMilk :enables :TurnInFreezer . 

Because of the inverseOf, we can view these steps either in enabling order as 

asserted, or in dependency order, as show in figure 7-5. 
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7-5 Dependencies for homemade ice cream 

 

CHALLENGE 

For any particular step in the process, we might want to know all the steps it depends 

on, or all the steps that depend on it.  How can we do this, using the patterns we already 

know? 

SOLUTION 

We can use the subPropertyOf/TransitiveProperty pattern (as we used, e.g., in 

section 7.3.1) for each of dependsOn and enables as follows: 
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:dependsOn rdfs:subPropertyOf :hasPrerequisite . 
:hasPrerequisite rdf:type owl:TransitiveProperty . 
:enables rdfs:subPropertyOf :prerequisiteFor . 
:prerequisiteFor rdf:type owl:TransitiveProperty . 

These relationships can be seen graphically in 7-6 

 
7-6. Transitive Properties hasPrerequisite and prerequisiteFor defined in terms of dependsOn and 
enables. 

From these triples, for instance, we can infer that GraduallyMix has five 

prerequisites, namely  

:GraduallyMix :hasPrerequisite :AddSugar ; 
              :hasPrerequisite :SeparateEggs ; 
              :hasPrerequisite :SliceBean ; 
              :hasPrerequisite :HeatCream ; 
              :hasPrerequisite :BeatEggs . 

CHALLENGE 

In a more realistic workflow management setting, we wouldn’t just be managing a 

single process (corresponding to a single recipe).  We would be managing several 

processes that interact in complex ways. We could even lose track of which steps are in 

the same procedure. Is there a way to find out, given a particular step, the other steps in 

the same process? In our recipe example, can we model the relationship between steps, so 

that we can connect steps in the same recipe together? 
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SOLUTION 

First, we combine together both of our fundamental relationships (enables and 

dependsOn) as common subPropertyOf a single unifying property (neighborStep).  We 

then in turn make that a subPropertyOf of a transitive property (inSameRecipe), shown 

here in N3 and as a diagram in figure 7-7(a). 

:dependsOn rdfs:subPropertyOf :neighborStep . 
:enables rdfs:subPropertyOf :neighborStep . 
:neighborStep rdfs:subPropertyOf :inSameRecipe . 
:inSameRecipe rdf:type owl:TransitiveProperty . 

These triples can be seen graphically in figure 7-7(a). 

What inferences can we draw from these triples, for the instance GraduallyMix? Any 

directly related step (related by either dependsOn or enables) becomes a neighborStep, 

and any combination of neighbors is rolled up with inSameRecipe. A few selected 

inferences are shown here: 
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:GraduallyMix :neighborStep :BeatEggs ; 
             :neighborStep :HeatCream ; 
             :neighborStep :CookCustard . 
:CookCustard :neighborStep :Chill ; 
             :neighborStep :GraduallyMix . 
:GraduallyMix :inSameRecipe :BeatEggs ; 
             :inSameRecipe :HeatCream ; 
             :inSameRecipe :CookCustard . 
:CookCustard :inSameRecipe :Chill ; 
             :inSameRecipe :GraduallyMix . 
… 
:GraduallyMix :inSameRecipe :AddMilk ; 
             :inSameRecipe :CookCustard ; 
             :inSameRecipe :TurnInFreezer ; 
             :inSameRecipe :AddSugar ; 
             :inSameRecipe :SeparateEggs ; 
             :inSameRecipe :SliceBean ; 
             :inSameRecipe :HeatCream ; 
             :inSameRecipe :GraduallyMix ; 
             :inSameRecipe :Chill ; 
             :inSameRecipe :BeatEggs . 

All the steps in this recipse have been gathered up with inSameRecipe, as desired. In 

fact, any two steps in this recipe will be related to one another by inSameRecipe, 

including relating each step to itself. In particular, the triple  

GraduallyMix inSameRecipe GraduallyMix . 

has been inferred. While this is, strictly speaking, correct (after all, GraduallyMix is 

indeed in the same recipe as GraduallyMix), it might not be what we actually wanted to 

know.  

CHALLENGE 

How can we define a property that will relate a recipe step only to the other steps in 

the same recipe? 

SOLUTION 

Earlier we defined two properties, hasPrerequisite and prerequisiteFor, one looking 

“downstream” along the dependencies, and the other looking “upstream”,  
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:dependsOn rdfs:subPropertyOf :hasPrerequisite . 
:hasPrerequisite rdf:type owl:TransitiveProperty . 
:enables rdfs:subPropertyOf :prerequisiteFor . 
:prerequisiteFor rdf:type owl:TransitiveProperty . 

If we join these two together under a common superproperty which is not transitive,  

:hasPrerequisite rdfs:subPropertyOf :otherStep . 
:prerequisiteFor rdfs:subPropertyOf :otherStep . 

These relationships are shown diagrammatically in figure 7-7(b) 

We track the inferences separately for each property. For hasPrerequisite, we have 

already seen that we can infer 

:GraduallyMix :hasPrerequisite :AddSugar   ; 
              :hasPrerequisite :SeparateEggs   ; 
              :hasPrerequisite :SliceBean   ; 
              :hasPrerequisite :HeatCream   ; 
              :hasPrerequisite :BeatEggs  . 

For prerequisisteOf, we get the following inferences: 

:GraduallyMix :prerequisiteFor :AddMilk ; 
              :prerequisiteFor :CookCustard ; 
              :prerequisiteFor :TurnInFreezer ; 
              :prerequisiteFor :Chill . 

Now, for otherStep, we get the combination of these two.  Notice that neither list 

includes GraduallyMix itself, so it does not appear in this list, either: 

:GraduallyMix :otherStep :AddMilk ; 
              :otherStep :CookCustard ; 
              :otherStep :TurnInFreezer ; 
              :otherStep :AddSugar ; 
              :otherStep :SeparateEggs ; 
              :otherStep :SliceBean ; 
              :otherStep :HeatCream ; 
              :otherStep :Chill ; 
              :otherStep :BeatEggs . 

Figure 7-7 shows the two patterns; for inSameRecipe, we have a single transitive 

property at the top of a subPropertyOf tree; both primitive properties (enables and 
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dependsOn) are brought together, and any combination of the resulting property 

(neighborStep) are chained together as a TransitiveProperty (inSameRecipe). For 

otherStep, the top-level property itself is not transitive, but is a simple combination (via 

two subPropertyOf links) of two transitive properties (hasPrerequisite and 

prerequisiteFor). Inference for each of these transitive properties is done separately from 

the other, and the results combined (without any more transitive interaction). Hence, for 

inSameRecipe, the reflexive triples like  

:GraduallyMix :inSameRecipe :GraduallyMix .  

are included, while for otherStep, they are not.  

 (a) 

 (b) 
7-7 Contrast patterns for inSameRecipe (includes self) and otherStep (excludes self). Both patterns 
work from the same input properties dependsOn and enables, but yield different results.  
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7.4 Equivalence 

RDF provides a global notion of identity that has validity across data sources; that 

global identity is the URI. This makes it possible to refer to a single entity in a distributed 

way. But when we want to merge information from multiple sources controlled by 

multiple stakeholders, it is unlikely that any two stakeholders will use the same URI to 

refer to the same entity.  Thus, in a federated information setting, it is useful to be able to 

stipulate that two URIs actually refer to the same entity.   But there are different ways in 

which two entities can be the same – some are more equal than others. OWL-Fast 

provides a variety of notions of equivalence. As with other constructs in OWL, these 

different constructs are defined by the inferences they entail.  
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7.4.1 Equivalent Classes 

In Section 6.3.4 XXX, we used a simple idiom to express that one class had the same 

elements as another; in particular, we asserted two triples  

:Analyst rdfs:subClassOf :Researcher . 
:Researcher rdfs:subClassOf :Analyst . 

to indicate that every Analyst is a Researcher, and that every Researcher is an 

Analyst. As we saw in section 6.3.4XXX, the rule for rdfs:subClassOf can be applied in 

each direction, to support the necessary inferences to make every Analyst a Researcher 

and vice versa. When two classes are known to always have the same members, we say 

that the classes are equivalent. The pattern shown above allows us to express class 

equivalence in RDFS, if in a somewhat unintuitive way.  

OWL-Fast provides a more intuitive expression of class equivalence, using the 

construct owl:equivalentClass. A single triple expresses class equivalence in the obvious 

way: 

:Analyst owl:equivalentClass :Researcher . 

As with any other construct in RDFS or OWL, the precise meaning of 

owl:equivalentClass is given by the inferences that can be drawn. In particular, if we 

know that 

A owl:equivalentClass  B . 
r rdf:type A . 

 
then we can infer 



27 

r rdf:type B . 
 

So far, this is just the type propagation rule that we used to define the meaning of 

rdfs:subClassOf  back in chapter 6.  But owl:equivalentClass has another rule as well; 

that 

A rdfs:subClassOf  B . 
r rdf:type B . 

 
then we can infer 

r rdf:type A . 
 

That is, the two classes A and B have exactly the same members.  

It seems a bit of a shame that something as simple as equivalence requires two rules 

to express, especially when the rules are so similar. In fact, this isn’t necessary;  if we 

observe that  

owl:equivalentClass rdfs:type owl:SymmetricProperty .  

then there is no need for the second rule; we can infer it from the first rule, and the 

symmetry of equivalentClass.  

In fact, we don’t actually need any rules at all; if we also assert that  

owl:equivalentClass rdfs:subPropertyOf rdfs:subClassOf . 

we can use the rules for subPropertyOf and subClassOf to infer everything about 

equivalentClass! Let’s see how the rules for OWL that we have already learned work for 

owl:equivalentClass, in the case of the Analyst and the Researcher.  

From the rule about rdfs:subClassOf and the statement of equivalence of Analyst and 

Researcher, we can infer 

:Analyst rdfs:subClassOf :Researcher . 
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But since owl:equivalentClass is symmetric, we can also infer that  

:Researcher owl:equivalentClass :Analyst . 

and by applying the rule for rdfs:subClassOf once again, we get  

:Researcher rdfs:subClassOf :Analyst . 

That is, simply by applying what we already know about rdfs:subClassOf and 

owl:SymmetricProperty, we can infer both rdfs:subClassOf triples from the single 

owl:equivalentClass triple.  

Notice that when two classes are equivalent, it only means that the two classes have 

the same members.  Other properties of the classes are not shared; for example, each 

class keeps its own rdfs:label. This means that if these classes have been merged from 

two different applications, that each of these applications will still display the class by the 

original print name; only the members of the class will change.  

7.4.2 Equivalent Properties 

In section 6.3.6.1XXX, we saw how we could use rdfs:subPropertyOf to make two 

properties behave in the same way; the trick we used there was very similar to the 

double-subClassOf trick we used in section 6.3.4; we use rdfs:subPropertyOf twice to 

indicate that two properties are equivalent.  

:borrows rdfs:subPropertyOf :checkedOut . 
:checkedOut rdfs:subPropertyOf :borrows . 

OWL-Fast also provides a more intuitive way to express property equivalence, using 

owl:equivalentProperty, as follows: 

:borrows owl:equivalentProperty :checkedOut . 
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When two properties are equivalent, we expect that in any triple that uses one as a 

predicate, the other can be substituted, that is, for any triple  

A borrows B . 

we can infer 

A checkedOut B . 

And vice-versa. We can accomplish this in a manner analogous to the method used 

for owl:equivalentClass in section 7.4.1; we define owl:equivalentProperty in terms of 

other OWL-Fast constructs.  

owl:equivalentProperty rdfs:subPropertyOf rdfs:subPropertyOf. 
owl:equivalentProperty rdf:type owl:SymmetricProperty . 

Starting with the asserted equivalence of borrows and checkedOut, using these 

triples, and the rules for rdfs:subPropertyOf and owl:SymmetricProperty, we can infer 

that  

borrows rdfs:subPropertyOf checkedOut . 
checkedOut owl:equivalentProperty borrows . 
checkedOut rdfs:subPropertyOf borrows . 

Once we have inferred that borrows and checkedOut are rdfs:subPropertyOf one 

another, we can make all the inferences mentioned in section 6.3.6.1XXX. 

When we express new constructs (like owl:equivalentProperty in this section) to 

constructs we already know (rdfs:subPropertyOf and owl:SymmetricProperty), we 

explicitly describe how the various parts of the language fit together. That is, rather than 

just noticing that the rule that governs owl:equivalentProperty is the same rule as the one 

that governs rdfs:subPropertyOf (except that it works both ways!), we can actually model 

these facts; by making owl:equivalentProperty a subproperty of rdfs:subPropertyOf, we 

explicitly assert that they are governed by the same rule.  By making 
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owl:equivalentProperty a SymmetricProperty, we assert the fact that this rule works in 

both directions. This makes the relationship between the parts of the OWL language 

explicit, and in fact, models them in OWL.  

7.4.3 Same individuals 

Class equivalence (owl:equivalentClass) and property equivalence 

(own:equivalentProperty) provide intuitive ways to express relationships that were 

already expressible in RDFS; in this sense, neither of these constructs have increased the 

expressive power of OWL-Fast beyond what was already available in RDFS; they have 

just made it easier to express and clearer to read. These constructs refer respectively to 

classes of things and the properties that relate them 

But when we are describing things in the world, we aren’t only describing classes 

and properties; we are describing the things themselves. These are the members of the 

classes. We refer to these as individuals.  We have encountered a number of individuals 

in our examples so far; Wenger the Analyst, Twelfth Night the Play, Shakespeare the 

Playwright, Kildare the Surgeon, Kaneda the All Star Player, and any number of things 

whose class membership has not been specified; Wales, The Firm, and Moby Dick. But 

remember the non-unique naming assumption from section 1.7.4; often our information 

comes from multiple sources that might not have done any coordination in their reference 

to individuals. How do we handle the situation in which we determine that two 

individuals that we originally thought of separately are in fact the same individual? 

In OWL-Fast, this is done with the single construct owl:sameAs. Our old friend 

William Shakespeare will provide us with an example of how owl:sameAs works.  
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From Chapter 3 XXX, we have the following triples about the literary career of 

William Shakespeare: 

lit:Shakespeare lit:wrote lit:AsYouLikeIt  ; 
                lit:wrote lit:HenryV ; 
                lit:wrote lit:LovesLaboursLost ; 
                lit:wrote lit:MeasureForMeasure ; 
                lit:wrote lit:TwelfthNight ; 
                lit:wrote lit:WintersTale ; 
                lit:wrote lit:Hamlet ; 
                lit:wrote lit:Othello . 

Suppose we have at our disposal information from the Stratford Parish Register, 

which lists the following information from some baptisms that occurred there.  We will 

use spr: as the namespace identifier for URIs from the Stratford Parish Register. 

spr:Gulielmus spr:hasFather spr:JohannesShakspere . 
spr:Susanna spr:hasFather spr:WilliamShakspere . 
spr:Hamnet spr:hasFather spr:WilliamShakspere . 
spr:Judeth spr:hasFather spr:WilliamShakspere . 

Suppose that our research determines that indeed, the resources mentioned here as 

spr:Gulielmus, spr:WilliamShakespere and lit:Shakespeare all refer to the same 

individual, so that the answer to the question, “Did Hamnet’s father write Hamlet?” 

would be “yes.” If we had known that all of these things refer to the same person in 

advance of having represented the Stratford Parish Register in RDF, we could have used 

the same URI (e.g., lit:Shakespeare) for each occurrence of the Bard. But now it is too 

late; the URIs from each data source have already been chosen.  What is to be done? 

First, let’s think about how to pose the question “Did Hamnet’s father write 

Hamlet?” We can write this as a graph pattern in SPARQL, as follows: 

{spr:Hamnet spr:hasFather ?d . 
 ?d lit:wrote lit:Hamlet . } 
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that is, we are looking for a single resource that links Hamnet to Hamlet via the two 

links spr:hasFather and lit:wrote.  

In OWL-Fast, we have the option of asserting the sameness of two resources. Let’s 

start with just one 

spr:WilliamShakspere owl:sameAs lit:Shakespeare . 

The meaning of this triple, as always in OWL-Fast, is expressed by the inferences 

that can be drawn. The rule for owl:sameAs is quite intuitive; it says that if A owl:sameAs 

B, then in any triple where we see A, we can infer the same triple, with A replaced by B.  

So for our Shakespeare example, we have that for any triple of the form  

spr:WilliamShakespere P O . 

we can infer 

lit:Shakespeare P O . 

Similarly, for any triple of the form  

S P spr:WilliamShakespeare . 

we can infer 

S P lit:Shakespeare . 

Furthermore, just as we did for owl:equivalentClass (section 7.4.1) and 

owl:equivalentProperty (section 7.4.2), we assert that owl:sameAs is a 

owl:SymmetricProperty: 

owl:sameAs rdf:type owl:SymmetricProperty . 

This allows us to infer that 

lit:Shakespeare owl:sameAs spr:WilliamShakspere. 

so that we can replace any occurrence of lit:Shakespeare with spr:WilliamShakspere 

as well.  
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Let’s see how this works with the triples we know from literary history and the 

Register. We list all triples; asserted triples in plain face, inferred triples in italics. 

Among the inferred triples, we begin by replacing lit:Shakespeare with 

spr:WilliamShakspere, then continue by replacing  spr:WilliamShakspere with 

lit:Shakespeare: 

lit:Shakespeare lit:wrote lit:AsYouLikeIt  ; 
                lit:wrote lit:HenryV ; 
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                lit:wrote lit:LovesLaboursLost ; 
                lit:wrote lit:MeasureForMeasure ; 
                lit:wrote lit:TwelfthNight ; 
                lit:wrote lit:WintersTale ; 
                lit:wrote lit:Hamlet ; 
                lit:wrote lit:Othello . 
spr:Gulielmus spr:hasFather spr:JohannesShakspere . 
spr:Susanna spr:hasFather spr:WilliamShakspere . 
spr:Hamnet spr:hasFather spr:WilliamShakspere . 
spr:Judeth spr:hasFather spr:WilliamShakspere . 
spr:WilliamShakspere 
                lit:wrote lit:AsYouLikeIt  ; 
                lit:wrote lit:HenryV ; 
                lit:wrote lit:LovesLaboursLost ; 
                lit:wrote lit:MeasureForMeasure ; 
                lit:wrote lit:TwelfthNight ; 
                lit:wrote lit:WintersTale ; 
                lit:wrote lit:Hamlet ; 
                lit:wrote lit:Othello . 
spr:Gulielmus spr:hasFather spr:JohannesShakspere . 
spr:Susanna spr:hasFather lit:Shakespeare . 
spr:Hamnet spr:hasFather lit:Shakespeare . 
spr:Judeth spr:hasFather lit:Shakespeare . 

Now the answer to the query, “Did Hamnet’s father write Hamlet?” is “yes,” since 

there is a binding for the variable ?d in the SPARQL graph pattern given above.  In fact, 

there are two possible bindings, ?d=lit:Shakespeare and ?d=spr:Shakspere. 

7.4.3.1 Challenge: Merging data from different databases 

In section 3.3 XXX, we saw how to interpret information in a table as RDF triples. 

Each row in the table became a single individual, and each cell in the table became a 

triple. The subject of the triple is the individual corresponding to the row that the cell is 

in; the predicate is made up from the table name and the field name, and the object is the 

cell contents. The table in table 3-10XXX (repeated here as Table 7-1) becomes 63 

triples, for the 7 fields and 9 rows.  
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Product 

ID Model 
No. Division Product 

Line 
Manufacture 
location SKU Available 

1 ZX-3 Manufacturing 
support 

Paper 
machine 

Sacramento FB3524 23 

2 ZX-3P Manufacturing 
support 

Paper 
machine 

Sacramento KD5243 4 

3 ZX-3S Manufacturing 
support 

Paper 
machine 

Sacramento IL4028 34 

4 B-1430 Control 
Engineering 

Feedback 
Line 

Elizabeth KS4520 23 

5 B-1430X Control 
Engineering 

Feedback 
Line 

Elizabeth CL5934 14 

6 B-1431 Control 
Engineering 

Active 
Sensor 

Seoul KK3945 0 

7 DBB-12 Accessories Monitor Hong Kong ND5520 100 

8 SP-1234 Safety Safety 
Valve 

Cleveland HI4554 4 

9 SPX-
1234 

Safety Safety 
Valve 

Cleveland OP5333 14 

Table 7-1. Sample tabular data for triples, from table 3-10.  
 

Let’s look at just the triples having to do with the Manufacture_Location.   

man:Product1 man:Product_Manufacture_Location Sacramento . 
man:Product2 man:Product_Manufacture_Location Sacramento . 
man:Product3 man:Product_Manufacture_Location Sacramento . 
man:Product4 man:Product_Manufacture_Location Elizabeth . 
man:Product5 man:Product_Manufacture_Location Elizabeth . 
man:Product6 man:Product_Manufacture_Location Seoul . 
man:Product7 man:Product_Manufacture_Location Hong Kong . 
man:Product8 man:Product_Manufacture_Location Cleveland . 
man:Product9 man:Product_Manufacture_Location Cleveland . 

Suppose that another division in the company keeps its own table of the products, 

with information that is useful for that division’s business activities; namely, it describes 

the sort of facility that is required to produce the part. Table 7-2 shows some products 

and the facilities they require.   
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Product 

ID Model No. Facility 

1 B-1430 Assembly Center 

2 B-1431 Assembly Center 

3 M13-P Assembly Center 

4 ZX-3S Assembly Center 

5 ZX-3 Factory 

6 TC-43 Factory 

7 B-1430X Machine Shop 

8 SP-1234 Machine Shop 

9 1180-M Machine Shop 

Table 7-2 Sample data; parts and the facilities required to produce them. 
 

Some of the products in Table 7-2 also appeared in Table 7-1, others did not. It is not 

uncommon for different databases to overlap in such an inexact way. 

CHALLENGE 

Using the products that appear in both tables, how can we write a federated query 

that will cross-reference cities with the facilities that are required for the production that 

takes place there? 

SOLUTION 

If these two tables had been in a single database, then there could have been a 

foreign-key reference from one table to the other, and we could have joined the two 

tables together.  But since the tables come from two different databases, there is no such 

common reference.  
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When we turn both tables into triples, the individuals corresponding to each row are 

assigned global identifiers. Suppose that we use the namespace p: for this second 

database; when we turn Table 7-2 into triples, we get 27 triples, for the nine rows and 

three fields.  The triples corresponding to the required facilities are: 

p:Product1 p:Product_Facility "Assembly Center" . 
p:Product2 p:Product_Facility "Assembly Center" . 
p:Product3 p:Product_Facility "Assembly Center" . 
p:Product4 p:Product_Facility "Assembly Center" . 
p:Product5 p:Product_Facility "Factory" . 
p:Product6 p:Product_Facility "Factory" . 
p:Product7 p:Product_Facility "Machine Shop" . 
p:Product8 p:Product_Facility "Machine Shop" . 
p:Product9 p:Product_Facility "Machine Shop" . 

Although we have global identifiers for individuals in these tables, those identifiers 

are not the same.  For instance, p:Product1 is the same as man:Product4 (both 

correspond to model number B-1430). How can we cross-reference from one table to the 

other? 

The answer is to use a series of owl:sameAs triples, as follows: 

p:Product1 owl:sameAs man:Product4 . 
p:Product2 owl:sameAs man:Product6 . 
p:Product4 owl:sameAs man:Product3 . 
p:Product5 owl:sameAs man:Product1 . 
p:Product7 owl:sameAs man:Product5 . 
p:Product8 owl:sameAs man:Product8 . 

Now if we match the following SPARQL graph pattern 

{?p p:Product_Facility ?facility . 
 ?p man:Product_Manufacture_Location ?location .} 

And display ?facility and ?location in Table 7-3, we get 

?location ?facility 

Elizabeth Assembly Center 
Seoul Asssembly Center 
Sacramento Assembly Center 
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Sacramento Factory 
Elizabeth Machine Shop 
Cleveland Machine Shop 
Table 7-3 Locations cross-referenced with facilities, computed via products. 
 

This solution has addressed the challenge for the particular data in the example, but 

the solution relied on the fact that we knew which product from one table matched with 

which product from another table. But owl:sameAs only solves part of the problem; in 

real data situations, in which the data in the tables changes frequently, it is not practical to 

assert all the owl:sameAs triples by hand. In the next section, we will see how OWL-Fast 

provides a solution to the rest of the challenge.  

7.5 Computing sameness – functional properties 

Functional Properties in OWL get their name from a concept in mathematics, but 

like most of the OWL constructs, they have a natural interpretation in everyday life. A 

function property is one for which there can be just one value. Examples of such 

properties are quite common; hasMother (since a person has just one biological mother), 

hasBirthplace (someone was born in just one place) and birthdate (just one) are a few 

simple examples.  

In mathematics, a function is a mapping that gives one value for any particular input; 

so x2 is a function, since for any value of x, there is exactly one value for x2. Another way 

to say this is that if x=y, then x2= y2. In order to solve the previous challenge problem, we 

will have to have constructs in OWL-Fast that have this same sort of behavior; that is, we 

want to describe something as being able to refer to only a single value. 

The next two constructs we will describe, FunctionaProperty and 

InverseFunctionalProperty, use this idea to determine when two resources refer to the 
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same individual, thereby providing the OWL modeler with a means for describing how 

information from multiple sources are to be considered as a distributed web of 

information. The constructs provide the semantic framework for using OWL-Fast in a 

Semantic Web setting. 
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7.5.1 Functional properties 

OWL-Fast borrows the name functional to describe a property that, like a 

mathematical function, can only take one value for any particular individual. The precise 

details of the meaning of owl:FunctionalProperty is given, as usual, as an inference 

pattern. If we have the following triples 

P rdf:type owl:FunctionalProperty . 
X P A . 
X P B . 

Then we can infer that 

A owl:sameAs B . 

This definition of owl:FunctionalProperty is analogous to the mathematical situation 

in which we know that x2 has a single unambiguous value.  More precisely, if we know 

that x2 =a and x2 =b, then we may conclude that a=b. In OWL-Fast, this looks as 

follows, in which the first three triples are asserted, and the fourth is inferred: 

math:hasSquare rdf:type owl:FunctionalProperty . 
x math:hasSquare A . 
x math:hasSquare B . 
A owl:sameAs B . 

Functional properties are important in OWL-Fast because they allow sameness to be 

inferred.  For instance, suppose that in the Stratford Parish Registry we have an entry that 

tells us 

lit:Shakespeare fam:hasFather bio:JohannesShakspere . 

and that from Shakespeare’s grave we learn that  

lit:Shakespeare fam:hasFather bio:JohnShakespeare . 

We would like to conclude that John and Johannes are in fact the same person. If we 

know from a background model of family relationships that  
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fam:hasFather rdf:type owl:FunctionalProperty . 

then we can conclude, from the definition of owl:FunctionalProperty, that 

bio:JohannesShakspere owl:sameAs bio:JohnShakespeare . 

as desired.  

While owl:FunctionalProperty provides us with a means of concluding that two 

resources are the same, this is not the usual pattern for determining that two entities are 

the same in most real data.  Much more common is the closely related notion of 

owl:InverseFunctionalProperty, which we treat next.  

7.5.2 Inverse Functional Properties 

Some people consider owl:InverseFunctionalProperty to be the most important 

modeling construct in OWL-Fast, especially in situations in which a model is being used 

to manage data from multiple sources. Whether this is true or not, it is certainly true that 

it has the most difficult name with respect to its utility of any construct. 

The name owl:InverseFunctionalProperty was chosen to be consistent with the 

closely related owl:FunctionalProperty, and in fact, one can think of an 

owl:InverseFunctionalProperty simply as the inverse of an owl:FunctionalProperty. So, 

if math:hasSquare is a functional property, then its inverse, math:hasSquareRoot, is an 

inverse functional property.  
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What does this mean, in terms of inferences that can be drawn?  The rule looks very 

similar to the rule for owl:FunctionalProperty. If we know that  

P rdf:type owl:InverseFunctionalProperty . 
A P X . 
B P X . 

then we can infer that  

A owl:sameAs B . 

For example, if we define a property buriedAt to be sufficiently specific that we 

cannot have two people buriedAt the same location, then we can declare it to be and 

owl:InverseFunctionalProperty. If we were then to have two triples that assert 

spr:Shakespere buriedAt TrinityChancel . 
lit:Shakespeare buriedAt TrinityChancel . 

Then we could infer that  

spr:Shakespere owl:sameAs lit:Shakespeare . 

An owl:InverseFunctionalProperty plays the role of a key field in a relational 

database; a single value of the property cannot be shared by two entities, just as a key 

field may not be duplicated in more than one row.  Unlike the case of a relational 

database, OWL-Fast does not signal an error if two entities are found to share a value for 

an inverse functional property; instead, OWL-Fast infers that the two entities must be the 

same. Because of the non-unique naming assumption, we cannot tell that two entities are 

distinct just by looking at their URIs. 

Examples of inverse functional properties are fairly commonplace; any identifying 

number (social security number, employee number, driver’s license number, serial 

number, etc.) is an inverse functional property. In some cases, full names are inverse 

functional properties, though in most applications, name duplications (is it the same John 
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Smith?) are common enough that full names are not inverse functional properties. In an 

application at the Boston Children’s Hospital, it was necessary to find an inverse 

functional property that would uniquely identify a baby (since newborns don’t always 

have their social security numbers assigned yet). The added catch was that it had to be a 

property that the mother was certain, or at least extremely likely, to remember. Although 

babies are born at any time of day in a busy hospital, it is sufficiently unusual for two 

babies to born at exactly the same minute that time of birth could be used as an inverse 

functional property.  And every mother was able to remember when her baby was born.  

Now that we have inverse functional properties, we are able to continue the solution 

to the challenge from Section 7.4.3.1. In that solution, we merged information from two 

databases by matching the global URIs of individuals from two databases with the 

following series of owl:sameAs triples 

p:Product1 owl:sameAs man:Product4 . 
p:Product2 owl:sameAs man:Product6 . 
p:Product4 owl:sameAs man:Product3 . 
p:Product5 owl:sameAs man:Product1 . 
p:Product7 owl:sameAs man:Product5 . 
p:Product8 owl:sameAs man:Product8 . 

Once we had these triples, we were able to cross-reference cities with facilities, using 

products as an intermediary.  But we had to create these triples by hand.  

CHALLENGE 

How can we infer the appropriate owl:sameAs triples, from the data that has already 

been asserted? 

SOLUTION 

The approach we will take to this challenge is to find an inverse functional property 

that is present in both data sets, that we can use to bridge between them.  When we 
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examine Table 7-2 and in table 3-10XXX, we see that they both have a field called Model 

No., which refers to the identifying model number of the product. As is typical for such 

identifying numbers, if two products have the same model number, then they are the 

same product. So we want to declare Model No. to be an inverse functional property, 

thus: 

man:Product_ModelNo rdf:type owl:InverseFunctionalProperty . 

This almost works, but there is still a catch; each database has its own Model No. 

property; the one in this triple came from the database in Chapter 3XXX; in this chapter, 

there is another property. p:Product_ModelNo. So it seems that we still have more 

integration to do. Fortunately, we already have the tool we need to do this; we simply 

have to assert that these two properties are equivalent, thus: 

p:Product_ModelNo owl:equivalentProperty man:Product_ModelNo . 

It really doesn’t matter which way around we do any of these things; since 

owl:equivalentProperty is symmetric, we can write this triple with the subject and object 

reversed, and it will make no difference to the inferences.  

Let’s see how these inferences roll out.  We begin with the asserted triples from both data 

sources, and proceed with inferred triples: 
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p:Product1 p:Product_ModelNo "B-1430" . 
p:Product2 p:Product_ModelNo "B-1431" . 
p:Product3 p:Product_ModelNo "M13-P" . 
p:Product4 p:Product_ModelNo "ZX-3S" . 
p:Product5 p:Product_ModelNo "ZX-3" . 
p:Product6 p:Product_ModelNo "TC-43" . 
p:Product7 p:Product_ModelNo "B-1430X" . 
p:Product8 p:Product_ModelNo "SP-1234" . 
p:Product9 p:Product_ModelNo "1180-M" . 
man:Product1 man:Product_ModelNo "ZX-3" . 
man:Product2 man:Product_ModelNo "ZX-3P" . 
man:Product3 man:Product_ModelNo "ZX-3S" . 
man:Product4 man:Product_ModelNo "B-1430" . 
man:Product5 man:Product_ModelNo "B-1430X" . 
man:Product6 man:Product_ModelNo "B-1431" . 
man:Product7 man:Product_ModelNo "DBB-12" . 
man:Product8 man:Product_ModelNo "SP-1234" . 
man:Product9 man:Product_ModelNo "SPX-1234" . 
p:Product1 man:Product_ModelNo "B-1430" . 
p:Product2 man:Product_ModelNo "B-1431" . 
p:Product3 man:Product_ModelNo "M13-P" . 
p:Product4 man:Product_ModelNo "ZX-3S" . 
p:Product5 man:Product_ModelNo "ZX-3" . 
p:Product6 man:Product_ModelNo "TC-43" . 
p:Product7 man:Product_ModelNo "B-1430X" . 
p:Product8 man:Product_ModelNo "SP-1234" . 
p:Product9 man:Product_ModelNo "1180-M" . 
p:Product1 owl:sameAs man:Product4 . 
p:Product2 owl:sameAs man:Product6 . 
p:Product4 owl:sameAs man:Product3 . 
p:Product5 owl:sameAs man:Product1 . 
p:Product7 owl:sameAs man:Product5 . 
p:Product8 owl:sameAs man:Product8 . 

The last six triples are exactly the owl:sameAs triples that we needed to complete our 

challenge. 

While this use of owl:InverseFunctionalProperty works fine for an example like this, 

most real data integration situations rely on more elaborate notions of identity, that include 

multiple properties as well as uncertainty (what about that one freak day when two babies were 

born the same minute at the same hospital?). Addressing these issues is the subject of current 

development on the OWL standard. 
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7.5.3 Combining Functional and Inverse Functional Properties.  

It is possible and often very useful for a single property to be both an 

owl:FunctionalProperty and an owl:InverseFunctionalProperty. When a property is in 

both of these classes, then it is effectively a one-to-one property; that is, for any one 

individual, there is exactly one value for the property, and vice versa. In the case of 

identification numbers, it is usually desirable that the property be one-to-one, as the 

following challenge illustrates: 

CHALLENGE 

Suppose we want to assign identification numbers to students at a university. These 

numbers will be used to assign results of classes (grades) as well as billing information 

for the students. Clearly no two students should share an identification number, and 

neither should one student be allowed to have more than one identification number. How 

do we model this situation in OWL-Fast? 

SOLUTION 

Define a property hasIdentityNo that associates a number with each student, so that 

its domain and range are defined by 

hasIdentityNo rdfs:domain Student . 
hasIdentityNo rdfs:range Integer . 

Furthermore, we can enforce the uniqueness properties by asserting that 

hasIdentityNo rdf:type owl:FunctionalProperty . 
hasIdentityNo rdf:type owl:InverseFunctionalProperty . 

Any two students who share an identity number must be the same (since it is Inverse 

Functional); furthermore, each student can have at most one identity number (since it is 

Functional).  
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7.5.4 Functional and Inverse Functional Summary 

It is meaningful and useful to use Functional and Inverse Functional in isolation or 

together; for example: 

Functional only: hasMother is a functional property only. Someone has exactly one 

mother, but many people can share the same mother.  

Inverse Functional Only: hasDiary is an inverse functional property only. A person 

may have many diaries, but it is the nature of a diary that it is not a collaborative effort; it 

is authored by one person only.  

Both Functional and Inverse Functional: taxID is both inverse functional and 

functional, since we want there to be exactly one taxID for each person, and vice versa.  

7.6 A few more constructs 

OWL-Fast provides a small extension to the vocabulary beyond RDFS, but these 

extensions greatly increase the scope of applicability of the language. In the preceding 

examples, we have seen how these new features interact with the features of RDFS to 

provide a richer modeling environment. The inclusion of owl:inverseOf combines with 

rdfs:subClassOf by allowing us to align properties that might not have been expressed in 

compatible ways in existing data schemas.  The inclusion of owl:TransitiveProperty 

combines with rdfs:subPropertyOf in a number of novel combinations, as seen here, 

allowing us to model a variety of relationships among chains of individuals. The most 

applicable extensions, from a Web perspective, are those that deal with sameness of 

different individuals.  sameAs, FunctionaProperty, and InverseFunctionalProperty in 

particular provide the OWL modeler with a means for describing how information from 
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multiple sources are to be considered as a distributed web of information. The constructs 

provide the semantic framework for using OWL-Fast in a Semantic Web setting.  

OWL provides a few more distinctions which, while they do not provide any 

semantics to a model, provide some useful discipline and provide information that many 

editing tools can take advantage of when displaying models. When displaying what value 

some property takes for some subject, should the display be a link to another object, or a 

widget for a particular data type? Tools that get this right seem intuitive and easy to use; 

tools that don’t seem awkward. So OWL provides a way to describe properties that can 

help a tool sort this out. In OWL, this is done by distinguishing between 

owl:DatatypeProperty and owl:ObjectProperty. 

In RDF, a triple always has a resource as its subject and predicate, but can have 

either another resource as object, or it can have a data item of some XML data type. We 

have seen plentiful examples of both of these: 

ship:QEII ship:maidenVoyage “May 2, 1969” . 
man:Product1 man:Product_SKU “FB3524” . 
AnneHathaway bio:married lit:Shakespeare . 
GraduallyMix inSameRecipe BeatEggs .  
spr:Susanna spr:hasFather spr:WilliamShakspere . 

Most tools that deal with OWL at this time prefer to make the distinction; in this 

case, ship:maidenVoyage and man:Product_SKU are datatype properties, while 

bio:married, inSameRecipe and spr:hasFather are object properties.  In triples, we say: 
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ship:maidenVoyage rdf:type owl:DatatypeProperty . 
man:Product_SKU rdf:type  owl:DatatypeProperty . 
bio:married rdf:type owl:ObjectProperty . 
inSameRecipe rdf:type owl:ObjectProperty . 
spr:hasFather rdf:type owl:ObjectProperty . 

Another distinction that is made in OWL (for reasons which are mostly historical; in 

future versions of OWL, we expect this distinction to be removed) is the difference 

between rdfs:Class and owl:Class.  

In Chapter 6XXX, we introduced the notion of rdfs:Class as the means by which 

schema information could be represented in RDF. Since that time, we have introduced a 

wide array of “schema-like” constructs like inverse, subproperty, transitivity, etc. But 

OWL also provides a special case of rdfs:Class called owl:Class. Since OWL is based on 

RDFS, it was an easy matter to make owl:Class backward compatibly with rdfs:Class by 

saying that every member of owl:Class  is also a member of rdfs:Class. This statement 

needn’t be made in prose, since we can say it in RDFS. In particular, the OWL 

specification stipulates that 

owl:Class rdfs:subClassOf rdfs:Class . 

Most tools today insist that classes used in OWL models be declared as members of 

owl:Class. In this chapter, we have left these class declarations out, since they are not 

central to the modeling examples we were giving.  But implicit in the examples in this 

chapter, as such statements as 
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Food  rdfs:type owl:Class . 
BakedGood rdfs:type owl:Class . 
Confectionary rdfs:type owl:Class . 
PackagedFood rdfs:type owl:Class . 
PreparedFood rdfs:type owl:Class . 
ProcessedFood  rdfs:type owl:Class . 
man:Product rdfs:type owl:Class . 
p:Product rdfs:type owl:Class . 

Most OWL tools today will work more consistently if classes are defined as 

instances of owl:Class; most model editors will do this automatically when a class is 

created.  

7.7 OWL-Fast: Summary 

The constructs in OWL-Fast are a subset of the constructs in OWL, but this subset 

provides considerable flexibility for modeling in the Semantic Web. In the next chapter, 

we will see some examples of how OWL-Fast is used in large scale Semantic Web 

projects. Here we summarize the constructs in OWL-Fast for easy reference, along with a 

(very) brief gloss of how the constructs are interpreted by an inference engine.  

RDF Schema Features: 

rdfs:subClassOf: Members of subclass are also member of superclass 

rdfs:subPropertyOf: Relations described by subproperty also hold for superproperty 

rdfs:domain: The subject of a triple is classified into the domain of the predicate. 

rdfs:range The object of a triple is classified into the range of the predicate 

Annotation Properties: 

rdfs:label: No inferential semantics, printable name 

rdfs:comment: No inferential semantics, information for readers of the model. 

 



51 

OWL Features - Equality: 

equivalentClass: Members of each class are also members of the other.  

equivalentProperty: Relations that hold for each property also hold for the other 

sameAs: All statements about one instance hold for the other.  

OWL Features: Property Characteristics: 

inverseOf: Exchange subject and object. 

TransitiveProperty: Chains of relationships collapse into a single relationship. 

SymmetricProperty: A property that is its own inverse. 

FunctionalProperty: Only one value allowed (as object). 

InverseFunctionalProperty: Only one value allowed (as subject) 

ObjectProperty: Property can have resource as object. 

DatatypeProperty: Property can have data value as object. 

 

 

 


