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6 RDF Schema language 
 

If Semantic Web modeling in RDF is about graphs, Semantic Web modeling in the 

RDF Schema language (RDFS) is about sets.  Some aspects of set membership can be 

modeled in RDF alone, as we have seen with the rdf:type built-in property. But RDF 

itself simply creates a graph structure to represent data. RDFS provides some guidelines 

about how to use this graph structure in a disciplined way. RDFS provides a way to talk 

about the vocabulary that will be used in an RDF graph. Which individuals are related to 

one another, and how?  How are the properties we use to define our individuals related to 

sets of individuals, and indeed to one another?  RDFS provides a way for an information 

modeler to express the answers to these sorts of questions, as they pertain to particular 

data modeling and integration needs.   

As such, RDFS is like other schema language – it provides information about the 

ways in which we describe our data. But RDFS differs from other schema languages in 

important ways.   

6.1 Schema Languages and their functions 

RDFS is the schema language for RDF.  But what is a schema language in the first 

place? There are a number of successful schema languages for familiar technologies, but 

the role that each of these languages plays in the management of information is closely 

tied to the particular language or system.  

Let’s consider document modeling systems as an example. For such a system, a 

schema language allows one to express the set of allowed formats for a document.  For a 

given schema, it is possible to determine (often automatically) whether a particular 
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document conforms to that schema.  This is the major capability provided by XML 

Schema definitions. XML parsers can automatically determine whether a particular XML 

document conforms to a given schema.  

Other schema languages help us to interpret particular data.  For example, a database 

schema provides header and key information for tables in a relational database. There is 

nothing in the table itself to indicate the meaning of the information in a particular 

column, nor to indicate which column is to be used as an index for the table. This 

information is appropriately included in the database schema, since it does not change 

from one data record to the next.   

For Object-oriented programming systems, the class structure plays an organizing 

role for information as well.  But in object-oriented programming, the class diagram does 

more than describe data.  It determines, according to the inheritance policy of the 

particular language, what methods are available for a particular instance, and how they 

are implemented. This stands in stark contrast to relational databases and XML, in that it 

does not interpret information, but instead provides a systematic way for someone to 

describe information and available transformations for that information.  

Given this variety of understandings of how schema information can be used in 

different modeling paradigms, one could come to wonder whether calling something a 

schema language actually tells us anything at all! But there is something in common 

among all these notions of a schema. In all cases, the schema tells us something about the 

information that is expressed in the system. The schema is information about the data. 

How then can we understand the notion of schema in RDF?  What might we want to 

say about RDF data?  And how might we want to say it? They key idea of the schema in 
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RDF is that it should help provide some sense of meaning to the data. The mechanism by 

which it does this is again the concept of inference.  

The basic idea of inference is that it is possible to know more about a set of data than 

what is explicitly expressed in the data.  By making this extra information explicit, we 

explicate (in a small way) the meaning of the original data.  The additional information is 

based in a systematic way on patterns in the original data. This idea is not completely 

unfamiliar for schema languages.  In the case of XML Schema, the validation process 

provides more than just a yes/no answer, but also provides type information for the 

parsed data.  RDFS builds upon and formalizes this idea by providing detailed axioms 

that express exactly what inferences can be drawn from particular data patterns.  

In most modeling systems, there is a clear division between the data and its schema.  

The schema for a relational database is not typically expressed in a table in the database; 

the object model of an object-oriented system is not expressed as objects, and an XML 

DTD is not a valid XML document. But in many cases, modern versions of such systems 

do model the schema in the same form as the data; the meta-object protocol of Common 

Lisp and the introspection API of Java represent the object models as objects themselves.  

The XML Stylesheet Definition defines XML Styles in an XML language.  

In the case of RDF, the schema language was defined in RDF from the very 

beginning. That is, all schema information in RDFS is defined with RDF triples.  The 

relationship between “plain” resources in RDF and schema resources is made with 

triples, just like relationships between any other resources. This elegance of design makes 

it particularly easy to provide a formal description of the semantics of RDFS, simply by 

providing inference rules that work over patterns of triples. While this is good 
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engineering practice (in some sense, the RDF standards committee learned a lesson from 

the issues that the XML standards had with DTDs), its significance goes well beyond its 

value as good engineering. In RDF, everything is expressed as triples. The meaning of 

asserted triples is expressed in new (inferred) triples. The structures that drive these 

inferences, that describe the meaning of our data, are also in triples. This means that this 

process can continue as far as it needs to; the schema information that provides context 

for information on the Semantic Web can itself be distributed on the Semantic Web.  

We can see this in action by showing how a set is defined in RDFS. The basic 

construct for specifying a set in RDFS is called an rdfs:Class. Since RDFS is expressed 

in RDF, the way in which we express that something is a class is with a triple.  In 

particular, a triple in which the predicate is rdf:type, and the object is rdfs:Class.  Here 

are some examples that we will use in the following discussion: 

AllStarPlayer rdf:type rdfs:Class . 
MajorLeaguePlayer rdf:type rdfs:Class . 
Surgeon rdf:type rdfs:Class . 
Staff rdf:type rdfs:Class . 
Physician rdf:type rdfs:Class . 
 

These are triples in RDF just like any other; the only way that we know that they 

refer to the schema, rather than the data, is because of the use of the term in the rdfs: 

namespace, rdfs:Class. But what is new here? In Chapter Error! Reference source not 

found., we already had the notion of rdf:type, which we used to specify that something 

was a member of a set. What do we gain, by specifying explicitly that something is a set? 

What we gain is a description of the meaning of membership in a set. In RDF, the only 

‘meaning’ we had for set membership was given by the results of some query; rdf:type 

actually didn’t behave any differently from any other (even user-defined) property. How 
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can we specify what we mean by set membership? In RDFS, we express meaning 

through the mechanism of inference. 

6.2 What does it mean?  Semantics as inference 

RDFS “extends” RDF by introducing a set of distinguished resources into the 

language. This is similar to the way in which a traditional programming language can be 

extended by defining new language-defined keywords. But there is an important 

difference: in RDF, we already had the capability to use any resource in any triple 

(“Anyone can say anything about anything”); so by identifying certain specific resources 

as “new keywords”, we haven’t actually extended the language at all!  We have simply 

identified certain triples as having a special meaning, as defined by a standard.  

How can we define the ‘meaning’ of a distinguished resource? In RDFS, meaning is 

expressed by specifying inferences that can be drawn when the resource is used in a 

certain way.  Throughout the rest of this section, whenever we introduce a new resource 

in RDFS, we will answer the question “What does it mean?” with an answer of the form, 

“in these circumstances (defined by some pattern of triples), you can add (infer) the 

following new triples.”  

We will demonstrate this principle through a simple example of the meaning of one 

of the most fundamental terms in RDFS; rdfs:subClassOf. 

6.2.1 Example. Type propagation through  rdfs:subClassOf 

In the previous chapter, we saw the type propagation rule as an example of 

inferencing in the Semantic Web. The type propagation rule applies when we use rdf:type 

and rdfs:subClassOf in a particular pattern. But how does this kind of inference tell us 
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anything about what it means to be a member of a class? In RDFS, membership in a class 

is only given meaning when there several (well, at least, more than one) classes involved, 

and some relation between those classes is known. What does it mean for something to be 

a member of a class? It means that it is also a member of any superclass. This meaning is 

expressed in RDFS in general through inferencing, and in particular, with the type 

propagation rule. The type propagation rule is just one of many rules in RDFS. When 

taken together, these rules provide a way to express a variety of relations between classes 

and properties. Such a collection of classes and properties can provide a rudimentary 

definition of a vocabulary for RDF data. That is, it defines set of elements and the 

relationship of those sets to the properties that describe the elements.  

We begin with a simple example of the type propagation rule. We will combine this 

with other rules later on to show how rdfs:subClassOf forms the basis of a vocabulary 

definition. 

Suppose we define a vocabulary that says that an AllStarPlayer is a 

MajorLeaguePlayer, and that Kaneda is an AllStarPlayer.  Our ordinary understanding of 

how terminology works tells us that we should be able to infer that Kaneda is a 

MajorLeaguePlayer.  

One of the challenges in vocabulary modeling in general (and RDFS in particular) is 

to differentiate the two uses of the words “is a” in the example.  When we say that 

“AllStarPlayer is a MajorLeaguePlayer,” we are relating two types to one another; but 

when we say “Kaneda is an AllStarPlayer,” we are giving type information about a 

particular individual, that is, relating an individual to a type.  We already know how to 

provide individual type information from RDF; in N3, this latter statement appears as 
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Kaneda rdf:type AllStarPlayer . 
 

RDFS provides a new resource, rdfs:subClassOf, to express the “is a” relation 

between types.  In N3, our statement about types of players appears as 

AllStarPlayer rdfs:subClassOf MajorLeaguePlayer . 
 

RDFS provides a meaning for rdfs:subClassOf in this situation, that states that we 

may infer that the type information for Kaneda propagates in the expected way: 

Kaneda rdf:type MajorLeaguePlayer . 
 

Inferred triples have the same status as triples that we asserted; that is, they can be 

used again in other rules, to produce more inferred triples.  

In general, the pattern for rdfs:subClassOf states that if we have triples of the form 

 
A rdfs:subClassOf  B . 
r rdf:type A . 

 
then we can infer 

r rdf:type B . 
 

This very simple interpretation of the subclass relationship makes it a workhorse for 

RDFS modeling (and also for OWL modeling, as described in subsequent chapters). It 

corresponds to a great degree to the IF/THEN construct of programming languages; IF 

something is a member of the subclass, THEN it is a member of the superclass. It should 

come as no surprise that this has a large number of modeling applications. In RDFS, there 

is no construct that corresponds to the ELSE clause that is present in most conventional 

programming languages; you can infer things from asserted membership of resources in 

classes, but you cannot infer things from the lack of asserted membership. 
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6.3 The RDFS Schema Language 

There’s a lot more to RDFS than just the type propagation rule of rdfs:subClassOf. 

RDFS consists of a small number of inference patterns, each one of which can provide 

type information for individuals in a variety of circumstances.  We will go through these 

patterns in turn, showing examples of their use.  

6.3.1 Relationship propagation through rdfs:subPropertyOf 

We have just seen how RDFS provides a means by which classes can be related to 

one another by the subclass relationship, and the inferences that define the meaning of 

this construct. This allows a modeler using RDFS to describe (using the notion of sets) 

relationships among the elements that are described in a collection of RDF triples. But if 

we want to give meaning to our data, we need to do more than just talk about the 

elements; we need to talk about the properties that link them – the predicates of the 

triples. RDFS provides a simple mechanism for doing just that.  The mechanism works in 

a way that is very similar to the type propagation rule. The mechanism is, of course, 

based on an inference pattern. The pattern is defined using the resource (keyword) 

rdfs:subPropertyOf. 

The basic intuition behind the use of rdfs:subPropertyOf is that terminology includes 

verbs as well as nouns, and many of the same requirements for mapping nouns from one 

source to another will apply to relationships. Simple examples abound in ordinary 

parlance; the relationship brother is more specific than the relationship sibling; if 

someone is my brother, then he is also my sibling. This is formalized in RDFS using an 

inference rule for rdfs:subPropertyOf that is almost as simple as the one for 

rdfs:subClassOf. 
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For two properties P and R, we can assert that 

P rdfs:subPropertyOf R . 
 

What does this mean?  As always, the meaning of this statement will be given in 

terms of the inferences that it allows to be drawn. In particular, these inferences are that 

whenever we have the triple 

 
A P B . 

 
We can infer the triple  

 
A R B . 

 

6.3.1.1 Example. Employment  

A large firm engages a number of people in various capacities, and has a variety of 

ways to administer these relationships. Some people are directly employed by the firm, 

while others are contractors.  Among these contractors, some of them are directly 

contracted to the company on a free-lance basis, others on a long-term retainer, and still 

others contract through an intermediate firm.  All of these people could be said to work 

for the firm. 

How can we model this situation in RDFS? First we need to consider the inferences 

we wish to be able to draw, under what circumstances. There are a number of 

relationships that can hold between a person and the firm; we can call them contractsTo, 

freeLancesTo, indirectlyContractsTo, isEmployedBy and worksFor.   

If we assert any of these statements about some person, then we would like to infer 

that that person worksFor the firm.  Furthermore, there are intermediate conclusions we 
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can draw; for instance, both a free-lancer and an indirect contractor contract to the firm, 

and indeed work for the firm.   

All these relationships can be expressed in RDFS using the rdfs:subPropertyOf 

relation: 

 
freeLancesTo rdfs:subPropertyOf contractsTo . 
indirectlyContractsTo rdfs:subPropertyOf contractsTo . 
isEmployedBy rdfs:subPropertyOf worksFor . 
contractsTo rdfs:subPropertyOf worksFor . 

 
 

The discussion will be easier to follow if we represent this as a diagram, where the 

arrows denote, rdfs:subPropertyOf. 

 
Figure 1. subPropertyRelations for workers in the firm. 
 

In order to see what inferences can be drawn, we will need some instance data: 

Goldman isEmployedBy TheFirm . 
Spence freeLancesTo TheFirem . 
Long indirectlyContractsTo TheFirm .  

 
The rule that defines the meaning of rdfs:subPropertyOf implies a new triple, 

replacing any sub-property with its super-property.  So, since   

isEmployedBy rdfs:subPropertyOf worksFor . 
 

we can infer that  

Goldman worksFor TheFirm . 
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And because of the assertions about free-lancing and indirect contracts, we can infer 

that  

Spence contractsTo TheFirm . 
Long contractsTo TheFirm .  

 
And finally, since inferred triples can be used, just as asserted triples, to make further 

inferences, we can further infer that  

Spence worksFor TheFirm . 
Long worksFor TheFirm .  

 
In general, rdfs:subPropertyOf allows a modeler to describe a hierarchy of related 

properties. Just as in class hierarchies, specific properties are at the bottom of the tree, 

and more general properties are higher up in the tree.  Whenever any property in the tree 

holds between two entities, so does every property above it.  

The construct rdfs:subPropertyOf has no direct analog in object-oriented 

programming, where properties are not first-class entities (i.e., they cannot be 

related to one another, independent of the class in which they are defined).  For 

this reason, unlike the case of rdfs:subClassOf, object-oriented programmers 

have no conflict with a similar known concept. The only source of confusion is 

that sub-property diagrams like the one above are sometimes mistaken for class 

diagrams.  

6.3.2 Typing data by usage – rdfs:domain and rdfs:range 

We have seen how inferences around rdfs:subPropertyOf can be used to describe 

how two properties relate to one another. But when we describe the usage of terms in our 

data, we would also like to represent how a property is used, relative to the defined 

classes. In particular, we might want to say that when a property is used, the subject of 
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the triple comes from (i.e., has rdf:type) a certain class, and that the object comes from 

some other type. These two stipulations are expressed in RDFS with the resources 

(keywords) rdfs:domain and rdfs:range respectively.  

In mathematics, the words domain and range are used to refer to how a function (or 

more generally, a relation) can be used.  The domain of a function is the set of values for 

which it is defined, and the range is the set of values it can take.  In Real Analysis, for 

instance, the relation squareroot has the positive numbers as domain (since negative 

numbers don’t have square roots in the reals), and all reals as the range (since there are 

both positive and negative square roots).   

In RDFS, the properties rdfs:domain and rdfs:range have meanings inspired by the 

mathematical uses of these words. A property P can have an rdfs:domain and/or an 

rdfs:range.  These are specified, as is everything in RDF, via triples: 

 
P rdfs:domain D . 
P rdfs:range R . 

 
The informal interpretation of this is that the relation P relates values from the class 

D to values from the class R.  D and R need not be disjoint, or even distinct.  

The meaning of these terms is defined by the inferences that can be drawn from 

them. RDFS inferencing interprets domain with the inference rule: 

 
IF 
P rdfs:domain D . 
  and 
x P y .  
 
THEN 
 
x rdf:type D . 

 
Similarly, range is defined with the rule  
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IF  
P rdfs:range R . 
 
 and 
 
x P y .  
 
THEN 
 
y rdf:type R . 

 
In RDFS, domain and range give some information about how the property P is to be 

used; domain refers to the subject of any triple that uses P as its predicate, and range 

refers to the object of any such triple. When we assert that property P has domain D 

(respectively, range R), we are saying that whenever we use the property P, we can infer 

that the subject (respectively object) of that triple is a member of the class D (respectively 

R). In short – domain and range tell us how P is to be used, but rather than signaling an 

error if P is used in a way that is apparently inconsistent with this declaration, instead 

RDFS will infer the necessary type information to bring P into compliance with its 

domain and range declarations. In RDFS, there is no way to assert that a particular 

individual is not a member of a particular class (contrast with OWL, section 4XXX). In 

fact, in RDFS, there is no notion of an incorrect or inconsistent inference. This means 

that, unlike the case of XML Schema, an RDF Schema will never proclaim an input as 

invalid; it will simply infer appropriate type information. In this way, RDFS behaves 

much more like a database schema, which declares what joins are possible, but makes no 

statement about the validity of the joined data. 
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6.3.3 Combination of domain and range with subClassOf 

So far, we have seen inference patters for three resources in the rdfs namespace: 

rdfs:domain, rdfs:range and rdfs:subClassOf . We have seen how the inference patterns 

work on sample triples. But the inference patterns can also interact with one another in 

interesting ways. We can already see this happening with the three patterns we have seen 

so far. We will show the interaction between rdfs:subClassOf and rdfs:domain by starting 

with an example.  

Suppose we have a very simple class tree that includes just two classes; Woman and 

MarriedWoman in the usual subclass relation: 

:MarriedWoman rdfs:subClassOf :Woman . 

Suppose we have a property called maidenName, whose domain is MarriedWoman: 

:maidenName rdfs:domain :MarriedWoman . 

In diagram form, this looks as follows: 

 
Figure 2. Domain and subClassOf triples for hasMaidenName. 
 

This unsurprising model holds some subtlety; let’s examine closely what it says.  If 

we assert the maidenName of anything (even if we don’t know that it is a Woman!) the 

rule for rdfs:domain will allow us to infer that it is a MarriedWoman. So, for instance, if 

someone asserts 

:Karen maidenName “Stephens” . 

We can infer  
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:Karen rdf:type :MarriedWoman . 

But we can make further inference based on the rdfs:subClassOf relationship 

between the classes, namely that  

:Karen rdf:type :Woman . 

There was nothing in this example that was particular to Karen; in fact, if we learn of 

any resource at all that it has a maidenName, then we will infer that it is a Woman. That 

is, we know that for any resource X, if we have a triple of the form 

X :maidenName Y . 

we can infer 

X rdf:type :Woman . 

But this is exactly the definition of rdfs:domain; that is, we have just proved that  

:maidenName rdfs:domain :Woman . 

This is a different way to use the definition of rdfs:domain than we have previously 

seen. So far, we have applied the inference pattern whenever a triple using rdfs:domain 

was asserted or inferred. Now, we are inferring an rdfs:domain triple whenever we can 

prove that the inference pattern holds. That is, we view the inference pattern as the 

definition of what it means for rdfs:domain to hold.  

We can generalize this result to form a new inference pattern as follows: 

IF 
P rdfs:domain D . 
  and 
D rdfs:subClassOf C .  
 
THEN 
 
P rdfs:domain C . 
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That is, whenever we specify the rdfs:domain of a property to be some class, we can 

also infer that the property also has any superclass as rdfs:domain. The same conclusion 

holds for rdfs:range, using the same argument.  

This simple definition of the meaning of domain and range is actually quite 

aggressive; we can draw conclusions about the type of any element based simply upon its 

use in a single triple, whenever we have domain or range information about the predicate. 

As we shall see in later examples, this can result in some surprising inferences. The 

definitions of domain and range in RDFS are the most common problem areas for 

modelers with experience in another data modeling paradigm. It is unusual to have such a 

strong interpretation for very common concepts.  

The interaction between rdfs:domain and rdfs:subClassOf can seem  

particularly counterintuitive when viewed in comparison to Object-Oriented 

Programming. One of the basic mechanisms for organizing code in OOP is called 

inheritance.  There are a number of different schemes for defining inheritance, 

but they typically work by propagating information down the class tree; that is, 

something (e.g., a method or a variable) that is defined at one class is also 

available at its subclasses.   

There is a tendency for OO programmers, when they begin to work with 

RDFS, to expect inheritance to work in the same way.  This tendency results 

from an “obvious” mapping from RDFS to OOP in which an rdfs:Class 

corresponds to a Class in OOP, a property in RDFS corresponds to a variable in 

OOP,  and in which the assertion 
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P rdfs:domain C . 

corresponds to the definition of the variable corresponding to P being 

defined at class C. From this “obvious” mapping comes an expectation that these 

definitions should inherit in the same way that variable definitions inherit in OOP. 

But in RDFS, there is no notion of inheritance per se; the only mechanism 

at work in RDFS is inference. The inference rule in RDFS that most closely 

corresponds to the OO notion of inheritance is the subclass propagation rule 

from  section 6.2.1; that the members of a subclass are also members of a class.  

The ramifications of this rule for instances correspond to what one would expect 

from inheritance; since an instance of a subclass is also an instance of the parent 

class, then anything we say about members of the parent class will necessarily 

hold for all instances of the subclass; this is consistent with usual notions of 

inheritance.  

The interaction between rdfs:domain and rdfs:subClassOf , on the other 

hand, is more problematic.  Using to the “obvious” interpretation, we asserted 

that the variable hasMaidenName was defined at MarriedWoman, and then 

inferred that it was defined at a class higher in the tree, namely Woman.  Seen 

from an OO point of view, this interaction seems like inheritance up the tree, i.e., 

just the opposite of what is normally expected of inheritance in OOP.  

The fallacy in this conclusion comes from the “obvious” mapping of 

rdfs:domain as defining a variable relative to a class. In the Semantic Web, 

because of the AAA slogan, a property can be used anywhere, and must be 

independent of any class. The property maidenName was, by design, always 



18 

available for any resource in the universe (including members of the class 

Woman); the assertion or inference of rdfs:domain made no change in that 

respect. That is, it is never accurate in the Semantic Web to say that a property is 

“defined for a class”.  A property is defined independently of any class. 

6.4 RDFS Modeling Combinations and Patterns 

The inference rules for RDFS are few in number and quite simple, nevertheless their 

effect can be quite subtle in the context of shared information in a semantic web.  In this 

section, we outline a number of patterns of use of the basic RDFS features, illustrating 

each one with a simple example.  

6.4.1 Set Intersection  

It is not uncommon for someone modeling in RDFS to ask whether some familiar 

notions from logic are available.  “Can I model set intersection in RDFS?” is a common 

question. The technically correct answer to this question is simply “no.” There is no 

explicit modeling construct in RDFS for set intersection (nor for set union). However, 

when someone wants to model intersections (or unions), they don’t always need to model 

them explicitly. They often only need certain particular inferences that are supported by 

these logical relations. Sometimes these inferences are indeed available in RDFS through 

particular design patterns that combine the familiar RDFS primitives in specific ways.  

 

In the case of intersection n particular, one of the inferences someone might like to 

draw is that if a resource x is in C, then it is also in both A and B.  Expressed formally, 
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the relationship they are expressing is that C ⊆ A ∩ B. This inference can be supported 

by making C a common subclass of both A and B, as follows: 

C rdfs:subClassOf A . 
C rdfs:subClassOf B . 

 
How does this support an intersection-like conclusion? From the inference rule 

governing rdfs:subClassOf, it is evident that from the triple 

x rdf:type C . 
 

We can infer  

x rdf:type B . 
x rdf:type A . 

 
as desired. Notice that we can only draw the inferences in one direction; from 

membership in C, we can infer membership in A and B.  But from membership in A and 

B, we cannot infer membership in C. That is, we cannot express A ∩ B ⊆ C. This is the 

sense in which RDFS cannot actually express set intersection; it can only approximate it 

by supporting the inferencing in one direction.  

6.4.1.1 Example: Hospital skills 

Suppose we are describing the staff at a hospital.  There are a number of different 

jobs and people who fill them, including nurses, doctors, surgeons, administrators, 

orderlies, volunteers, etc. A very specialized role in the hospital is the Surgeon. Among 

the things we know about surgeons, is that they are members of the hospital staff. They 

are also qualified physicians.  Logically, we would say that Surgeon ⊆ Staff ∩ Physician, 

that is, Surgeon is a subset of those people who are both staff members and physicians.  
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Notice that we don’t want to say that every staff physician is a surgeon, so the set 

inclusion goes only one way. From this statement, we want to be able to infer that if 

Kildare is a surgeon, then he is also a member of staff and he is a physician.  

If we say 

 
Surgeon rdfs:subClassOf Staff . 
Surgeon rdfs:subClassOf Physician . 
Kildare rdf:type Surgeon . 

 
Then we can infer that  

 
Kildare rdf:type Staff . 
Kildare rdf:type Physician . 

 
We cannot make the inference the other way; that is, if we were to assert that Kildare 

is a physician and member of staff, no RDFS rules are applicable, and no inferences are 

drawn. This is appropriate; consider the case in which Kildare is a psychiatrist. As such, 

he is both a member of staff and physician, but it is inappropriate to conclude that he 

must be a surgeon. 

6.4.2 Property Intersection 

In RDFS, properties are treated in a way analogous to the treatment of classes, and 

all the same operations and limitations apply.  Even though it might seem unfamiliar to 

think of a property as a set, we can still use the set combination terms (intersection, 

union) to describe the functionality supported for properties. As was the case for Class 

intersections and unions, RDFS cannot express these things exactly, but it is possible to 

approximate these notions with judicious use of subPropertyOf. 
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One of the inferences we can express using subPropertyOf is that one property is an 

intersection of two others, P ⊆ R ∩ S.  That is, if we know that two resources x and y are 

related by property P, 

x P y . 
 

 we want to be able to infer both 

x R y . 
x S y . 

 

6.4.2.1 Example. Patients in hospital rooms 

Suppose we are describing patients in a hospital. When a patient is assigned to a 

particular room, we can infer a number of things about the patient; we know that they are 

on the duty roster for that room, and that their insurance will be billed for that room. How 

do we express that both of these inferences come from the single assignment of a patient 

to a room? 

lodgedIn rdfs:subPropertyOf billedFor . 
logdedIn rdfs:subPropertyOf assignedTo . 

 
Now if patient Marcus is lodgedIn Room101,  

Marcus lodgedIn Room101 . 
 

We can infer the billing and duty roster properties as well: 

Marcus billedFor Room101 . 
Marcus assignedTo Room101 . 

 
Notice that we cannot make the inference in the other direction; that is, if we were to 

assert that Marcus is billedFor Room101 and assignedTo Room101, no RDFS rules are 

applicable, and no inferences can be drawn. 
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6.4.3 Set Union  

Using a pattern similar to the one we used for set intersection, we can also express 

certain things about set unions in RDFS.  In particular, we can express that A ∪ B ⊆ C. 

We do this by making C a common superclass of A and B, thus: 

A rdfs:subClassOf C . 
B rdfs:subClassOf C . 

 
Any instance x that is a member of either A or B is inferred to be also a member of 

C; i.e.,  

 
x rdf:type A . 
   or 
x rdf:type B . 
 
implies  
 
x rdf:type C . 

6.4.3.1 Example. All-Stars.  

In determining the candidates for a season’s All Stars, the league rules state that they 

will select among all the players who have been named Most Valuable Player (MVP), as 

well as among those who have been top scorers (TopScorer) in their league.  We can 

model this in RDFS by making AllStarCandidate a common superclass of MVP and 

TopScorer as follows: 

MVP rdfs:subClassOf AllStarCandidate .  
TopScorer rdfs:subClassOf AllStarCandidate . 

 
Now, if we know that Reilly was named MVP and Kaneda was a TopScorer: 

Reilly rdf:type MVP . 
Kaneda rdf:type TopScorer . 

 
We can infer that both of them are All Star candidates: 
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Reilly rdf:type AllStarCandidate . 
Kaneda rdf:type AllStarCandidate . 

 
as desired.  Notice that as in the case of intersection, we can only draw the inference 

in one direction, that is, we can infer that AllStarCandidate ⊇ MVP ∪ TopScorer , but 

not the other way around.  

In summary, we can use rdfs:subClassOf to represent statements about intersection 

and union as follows: 

 
C ⊆ A ∩ B (by making C rdfs:subClassOf both A and B) 
C ⊇ A ∪ B (by making both A and B rdfs:subClassOf  C). 

 

6.4.4 Property Union 

One can use rdfs:subPropertyOf to combine properties from different sources, in a 

way that is analogous to the way in which rdfs:subClassOf can be used to combine 

classes as a union. If two different sources use properties P and Q in similar ways, then a 

single amalgamated property R can be defined with rdfs:subPropertyOf as follows: 

P rdfs:subPropertyOf R . 
Q rdfs:subPropertyOf R . 

 
For any pair of resources x and y related by P or by Q 
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x P y . 
 
or 
 
x Q y . 
 
we can infer that  
 
x R y . 

6.4.4.1 Example. Merging library records 

Suppose one library has a table in which it keeps lists of patrons and the books they 

have borrowed.  It uses a property called borrows to indicate that a patron has borrowed a 

book.  Another library uses checkedOut to indicate the same relationship.   

Just as in the case of classes, there are a number of ways to handle this situation.  If 

we are sure that the two properties have exactly the same meaning, we can make one 

property equivalent to another with a creative use of rdfs:subPropertyOf as follows: 

borrows rdfs:subPropertyOf checkedOut . 
checkedOut rdfs:subPropertyOf borrows . 

 
Then any relationship that is expressed by one library will be inferred to hold for the 

other.  In such a case, both properties are essentially equivalent.  

If we aren’t sure that the two properties are used in exactly the same way, but we 

have an application that we do know wants to treat them as the same, then we use the 

Union pattern to create a common super-property of both, as follows: 

borrows rdfs:subPropertyOf hasPossession . 
checkedOut rdfs:subPropertyOf hasPossession .  

 
Using these triples, all patrons and books from both libraries will be related by the 

property hasPossession, thus merging information from the two sources. 
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6.4.5 Property transfer 

When modeling the relationship between information that comes from multiple 

sources, a common requirement is to state that if two entities are related by some 

relationship in one source, that the same entities should be related by a corresponding 

relationship in the other source.  

This can be accomplished quite easily in RDFS with a single triple.  That is, if we 

have a property P in one source and property Q in another source, and we wish to state 

that all uses of P should be considered as uses of Q, we can simply assert that  

P rdfs:subPropertyOf Q . 

Now, if we have any triple of the form  

X P Y . 

We can infer that  

X Q Y . 

It may seem strange to have a design pattern that consists of a single triple; but this 

use of rdfs:subPropertyOf is so pervasive that it really merits being called out as a pattern 

in its own right.  

6.4.5.1 Example: Terminology reconciliation 

There are a growing number of standard information representation schemes being 

published in RDFS form.  Information that has been developed in advance of these 

standards (or in a silo away from them) needs to be re-targeted to be compliant with the 

standard.  This process can involve a costly and error-prone search-and-replace process 

through all the data sources. When the data is represented in RDF, there is often an easier 

option available, using the Property Transfer pattern. 
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As a particular example, the Dublin Core is a set of standard attributes used to 

describe bibliographic information for library systems. One of the most frequently used 

Dublin Core terms is dc:creator, which indicates an individual (person or organization) 

that is responsible for having created a published artifact.  

Suppose that a particular legacy bibliography system uses the term author to denote 

the person who created a book.  This has worked fine for this system, because it was not 

intended to classify books that were created without an author, e.g., compilations (which 

instead have an editor).   

How can we make this data conformant to the Dublin Core, without performing a 

costly and error-prone process to copy-and-replace author with dc:creator? 

This can be achieve in RDFS with the single triple 

author rdfs:subPropertyOf dc:creator . 
 

Now any individual for which the author property has been defined will now have 

the same value defined for the (standard) dc:creator property.  The work is done by the 

RDFS inference engine, instead of by an off-line editing process.  In particular, this 

means that legacy applications that are using the author property can continue to operate 

without modification, while newer, Dublin Core compliant applications can use the 

inferred data to operate in a standard fashion.  

6.5 Challenges 

Each of the patterns given above demonstrates the utility of combining one or more 

RDFS constructs to achieve a particular modeling goal. In this section, we outline a 

number of modeling scenarios that can be addressed with these patterns, and show how 

they can be applied to address these challenges.  
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6.5.1 Term reconciliation 
One of the most common challenges in terminology management is the resolution of 

terms used by different agents who want to use their descriptions together in a single 

federated application. For example, suppose that one agent uses the word “analyst”, while 

another uses the word “researcher”. There are a number of relationships that can hold 

between these two usages; we will examine a number of common relations as a series of 

challenges.  

CHALLENGE 

How do we then enforce the assertion that any member of the one class will 

automatically be treated as a member of the other? 

There are a number of approaches to this situation, depending on the details of the 

situation.  All of them can be implemented using the patterns we have identified so far. 

SOLUTION 

Let’s first take the case in which we determine that a particular term in one 

vocabulary is fully subsumed by a term in another, for example, we determine that a 

researcher is actually a special case of an analyst.  How can we represent this fact in 

RDFS? 

First, we examine the inferences that we want RDFS to draw, given this information.  

If a researcher is a special case of an analyst, then all researchers are also analysts. We 

can express this sort of “IF/THEN” relationship with a single rdfs:subClassOf 

relationship, thus: 

Researcher rdfs:subClassOf Analyst . 
 

Now any resource that is a Researcher, e.g., 
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Wenger rdf:type Researcher . 
 

will be inferred to be an analyst as well: 

Wenger rdf:type Analyst . 
 

If the relationship happens to go the other way around (that is, all analysts are 

researchers), the rdfs:subClassOf triple can be reversed accordingly. 

CHALLENGE 

What if the relationship is more subtle; suppose that there is considerable semantic 

overlap between the two concepts “analyst” and “researcher,” but neither concept is 

defined in a sharp, formal way.  It seems that there could be some analysts who are not 

researchers, and also vice-versa.  Nevertheless, for the purposes of the federated 

application, we want to treat these two entities as the same.  What can we do? 

SOLUTION 

In such a case, we can use the Union pattern outlined above.  We can define a new 

term (for the federated domain) that is not defined in either of the sources, e.g., 

“investigator.” Then we effectively define investigator as the union of researcher and 

analyst, using the common superproperty idiom: 

Analyst rdfs:subClassOf Investigator . 
Researcher rdfs:subClassOf Investigator . 

 
Described this way, we have made no commitment to a direct relationship between 

analyst and researcher, but we have provided a federated handle for speaking of the 

general class of these entities.  

CHALLENGE 

At the other extreme, suppose that we determine that the two classes really are 

identical in every way – that these two terms really are just two words for the same thing. 
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In terms of inference, we would like any member of one class to be a member of the 

other, and vice-versa.  

SOLUTION 

RDFS does not provide a primitive statement of class equivalence, but the same 

result can be achieved with creative use of rdfs:subClassOf: 

Analyst rdfs:subClassOf Researcher . 
Researcher rdfs:subClassOf Analyst . 
 

This may seem a bit paradoxical, especially to someone who is accustomed to 

object-oriented programming.  But the conclusions based on RDFS inferencing are clear.  

For example, if we know that 

Reilly rdf:type Researcher . 
Kaneda rdf:type Analyst .  

 
We can infer the other statements  

Reilly rdf:type Analyst . 
Kaneda rdf:type Researcher .  

 
In effect, the two rdfs:subClassOf triples (or indeed, any cycle of rdfs:subClassOf 

triples) together assert the equivalence of the two classes. 

6.5.2 Instance-level data integration 

Suppose you have contributions to a single question coming from multiple sources.  

In the case where the question determines which instances are of interest, there is a 

simple way to integrate them, using rdfs:subClassOf.  We will give an example from a 

military domain.  

A command and control mission planner wants to determine where ordnance can be 

targeted, or more specifically, where it cannot be targeted.  There are a number of 
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different sources of information that contributes to this decision.  One source provides a 

list of targets and their types, some of which must never be targeted (civilian facilities 

like churches, schools, and hospitals).  Another source provides descriptions of airspaces, 

some of which are off-limits (e.g., politically defined no-fly zones). A target is 

determined to be off-limits if it is excluded on the grounds of either of these data sources.  

CHALLENGE 

Bring together these data sources so that all of these sources (and any new ones that 

are subsequently discovered) are brought together into a single place.  

SOLUTION 

The solution is to use the Union construction to join together the two information 

sources into a single, federated class.   

fc:CivilianFacility rdfs:subClassOf cc:OffLimits . 
space:NoFlyZone rdfs:subClassOf cc:OffLimits . 

 
Now any instance from either the facility descriptions or the airspace descriptions 

that have been identified as restricted will be inferred to have cc:OffLimitsTarget. 

6.5.3 Readable labels with rdfs:label 

Resources on the Semantic Web are specified by URIs, which provide a globally 

scoped unique identifier for the resource. But URIs are not particularly attractive or 

meaningful for human readers. RDFS provides a built-in property called rdfs:label whose 

intended use is to provide a printable name for any resource.  This provides a standard 

way for presentation engines (e.g., web pages or desktop applications) to display the print 

name of a resource.  
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Depending on the source of the RDF data that is being displayed, there might be 

another source for human-readable names for any resource.  One solution would be to 

change the display agent to use a particular display property for each resource. A simpler 

solution can be done entirely using the semantics of RDFS, through a combination of the 

property union and property transfer patterns.  

Suppose we have imported RDF information from an external form, e.g., a database 

or spreadsheet. There are two classes of individuals defined by the import, Person and 

Movie.  For Person, a property called personName is defined that gives the name by 

which that person is professionally known.  For Movie, the property called movieTitle 

gives the title under which the movie was released.  Some sample data from this import 

might be as follows: 

Person1 personName “James Dean” . 
Person2 personName “Elizabeth Taylor” . 
Person3 personName “Rock Hudson” . 
Movie1 movieTitle “Rebel Without a Cause” . 
Movie2 movieTitle “Giant” . 
Movie3 movieTitle “East of Eden” . 

 
CHALLENGE 

We would like to use a generic display mechanism, which uses the standard property 

rdfs:label to display information about these people and movies.  How can we use RDFS 

to achieve this? 

SOLUTION 

The answer is to define each of these properties as sub-properties of rdfs:label as 

follows: 

personName rdfs:subPropertyOf rdfs:label . 
movieTitle rdfs:subPropertyOf rdfs:label . 
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When the presentation engine queries for rdfs:label of any resource, by the rules of 

RDFS inferencing, it will find the value of personName or movieTitle, depending on 

which one is defined for a particular individual. There is no need for the presentation 

engine to include any code that understands the (domain-specific) distinction between 

Person and Movie.  

6.5.4 Data typing based on use 

Suppose a shipping company has a fleet of vessels that it manages.  The fleet 

includes new vessels that are under construction, vessels that are being repaired, vessels 

that are currently in service, and vessels that have been retired from service. The 

information that the company keeps about its ships might include the information in the 

following table: 

 
Table Vessel 
Name Maiden 

Voyage 
Next 
Departure 

Decommission 
Date 

Destruction 
date 

Commander 

Berengaria June 16, 
1913 

 1938  Johnson 

QEII May 2, 
1969 

Mar 4, 
2010 

  Warwick 

Titanic April 10, 
1912 

  April 14, 
1912 

Smith 

Constitution July 22, 
1798 

Jan 12, 
2009 

  Preble 

 
This information can be expressed in RDF triples in the manner outlined in Chapter 

3.  Each row corresponds to a resource of type ship:Vessel; triples express the 

information that appears in the body of the table, e.g., 

ship:Berengaria ship:maidenVoyage “Dec. 16, 1946” . 
ship:QEII ship:nextDeparture “Mar 4, 2010” . 
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In addition to the class ship:Vessel, we can have subclasses that correspond to the 

status of the ships, e.g. 

ship:DeployedVessel rdfs:subClassOf ship:Vessel . 
ship:InServiceVessel rdfs:subClassOf ship:Vessel . 
ship:OutOfServiceVessel rdfs:subClassOf ship:Vessel . 
 

A DeployedVessel is one that has been deployed sometime in its lifetime. An 

InServiceVessel is one that is currently in service, while and OutOfServiceVessel is one 

that is currently out of service (for any reason, including retired ships and ships that have 

not been deployed). 

CHALLENGE 

How can we automatically classify each vessel into these more specific subclasses, 

depending on the information we have about it in the table?  For instance, if a vessel has 

had a maiden voyage, then it is a ship:DeployedVessel.  If its next departure is set, then it 

is an ship:InServiceVessel.  If it has a decommission date or a destruction date, then it is 

an ship:OutOfServiceVessel.  

SOLUTION 

We can enforce these inferences using rdfs:domain as follows: 

ship:maidenVoyage rdfs:domain ship:DeployedVessel . 
ship:nextDeparture rdfs:domain ship:InServiceVessel . 
ship:decommissionedDate rdfs:domain ship:OutOfServiceVessel . 
ship:destructionDate rdfs:domain ship:OutOfServiceVessel . 

 
The whole structure is shown in Figure 3. Vessel has three subclasses, 

DeployedVessel, InServiceVessel and OutOfServiceVessel. Each of these is in the domain 

of one or more of the properties maidenVoyage, nextDeparture, decommissionedDate and 

destructionDate as shown in the triples above and in the figure. Four instances are 

shown; maidenVoyage is specified for all four of them, so all of them have been 
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classified as DeployedVessel. QEII and Constitution have nextDeparture dates specified, 

so these two are classified as InServiceVessel. The remaining two vessels, Titanic and 

Berengaria, have specified destructionDate and decommissionedDate respectively and 

hence are classified as OutOfServiceVessel.  

 
Figure 3. Inferring classes of vessels from the information known about them. 
 
 

CHALLENGE 

All of these inferences concern the subject of the rows, i.e., the vessels themselves.  

It is also possible to draw inferences about the entities in the other table cells. How can 

we express the fact that the commander of a ship has the rank of “Captain”? 
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SOLUTION 

We express ranks as classes, as follows: 

ship:Captain rdfs:subClassOf ship:Officer . 
ship:Commander rdfs:subClassOf ship:Officer . 
ship:LieutenantCommander rdfs:subClassOf ship:Officer 
. 
ship:Lieutenant rdfs:subClassOf ship:Officer . 
ship:Ensign rdfs:subClassOf ship:Officer . 

 
Now we can express the fact that a ship’s commander has rank Captain with 

rdfs:range as follows: 

ship:hasCommander rdfs:range ship:Captain . 
 

From the information in the table, we can infer that all of Johnson, Warwick, Black 

and Montgomery are members of the class ship:Captain. These inferences, as well as the 

triples that led to them, can be seen in Figure 4. 

 
Figure 4. Inferring that the commanders of the ships have rank "Captain.” 
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6.5.5 Filtering undefined data 

A related challenge is to sort out individuals based on what information is defined 

for them. The set of individuals for which a particular value is defined should be made 

available for future processing; those for which it is undefined should not be processed.  

CHALLENGE 

In the example above, the set of vessels for which nextDeparture is defined could be 

used as input to a scheduling system, that plans group tours.  Ships for which no 

nextDeparture is known should not be considered.  

SOLUTION 

It is easy to define the set of vessels that have nextDeparture specified by using 

rdfs:domain.  First define a class of DepartingVessels that will have these vessels as its 

members.  Then define this to be the domain of nextDeparture 

ship:DepartingVessel rdf:type rdfs:Class . 
ship:nextDeparture rdfs:domain ship:DepartingVessel . 

 
From the table above (and as shown in ), only the Consitution and the QEII are 

members of the class ship:DepartingVessels, and can be used by a scheduling program. 

 
Figure 5. Ships with a nextDeparture specified are Departing Vessels. 
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6.5.6 RDFS and Knowledge Discovery 

The use of rdfs:domain and rdfs:domain differs dramatically from similar notions in 

other modeling paradigms. Because of the inference-based semantics of RDFS (and 

OWL), domains and ranges are not used to validate information (as is the case, for 

example, in OO modeling and XML), but instead are used to determine new information 

based on old information. We have just seen how this unique aspect of rdfs:domain and 

rdfs:range support particular uses of filtering and classifying information.  

These definitions are among the most difficult for beginning semantic web modelers 

to come to terms with. It is common for beginning modelers to find these tools clumsy 

and difficult to use. This difficulty can be ameliorated to some extent by noticing that 

RDFS in general, and domain and range in particular, are best understood as tools for 

knowledge discovery rather than knowledge description. On the semantic web, we don’t 

know in advance how information from somewhere on the web should be interpreted in a 

new context. The RDFS definitions of domain and range allow us to discover new things 

about our data based on its use.  

What does this mean for the skillful use of domain and range in RDFS? They are not 

to be used lightly, e.g. merely as a way to bundle together several properties around a 

class. Filtering results such as those shown in these challenge problems are the result of 

the use of domain and range. Proper use of domain and range must take these results into 

account. Recommended use of domain and range goes one step further; the 

recommended use is in one of these patterns, where some particular knowledge filtering 

or discovery pattern is intended. When used in this way, (e.g., using domain to describe 



38 

which ships are departing), it is guaranteed that the meaning of domain and range will be 

appropriate even in a web setting. 

6.6 RDFS Shortcomings 

While RDFS has considerable applicability in data amalgamation and the simplicity 

of its small number of axioms makes it compact and easy to implement, there are some 

clear shortcomings of RDFS that arise even in very simple modeling situations.  

6.6.1 Multiple domains/ranges 

In our shipping example, we had two definitions for the domain of nextDeparture: 

nextDeparture rdfs:domain DepartingVessel . 
nextDeparture rdfs:domain InServiceVessel . 

 
What is the interpretation of these two statements?  Is the domain of nextDeparture 

DepartingVessels, InServiceVessel, or both?  What does that mean? 

The right way to understand what a statement or set of statements means is to 

understand what inferences can be drawn from them.  Let’s consider the case of the QEII, 

for which we have the following asserted triples: 

ship:QEII ship:maidenVoyage “May 2, 1969” . 
ship:QEII ship:nextDeparture “Mar 4, 2010” . 
ship:QEII ship:hasCommander Warwick . 
 

The rules of inference for rdfs:domain allow us to draw the following conclusions: 

ship:QEII rdf:type ship:DepartingVessel . 
ship:QEII rdf:type ship:InServiceVessel . 
 

Each of these conclusions is drawn from the definition of rdfs:domain, as applied 

respectively to each of the domain declarations given above. This behavior is not a result 
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of a discussion of “what will happen when there are multiple domain statements?” but 

rather a simple logical conclusion based on the definition of rdfs:domain.  

How can we interpret these results?  Any vessel for which a nextDeparture is 

specified, will be inferred to be a member (i.e., rdf:type) of both classes, DepartingVessel 

and InServiceVessel. Effectively, any such vessel will be inferred to be in the intersection 

of the two classes specified in the domain statements. This in and of itself is not a 

shortcoming of RDFS, even though most people find it counter-intuitive.  

In Object-Oriented modeling, when one asserts that a property (or field, or 

variable, or slot) is associated with a class (as is done by rdfs:domain), the 

intuition is that “it is now permissible to use this property to describe members of 

this class.”  If there are two such statements, then the intuitive interpretation is 

that “it is now permissible to use this property with members of either of these 

classes.”  Effectively, multiple domain declarations are interpreted in the sense of 

set union; you may now use this property to describe any item in the union of the 

two specified domains. For someone coming in with this sort of expectation, the 

behavior of RDFS can be something of a surprise.  

This interaction makes it necessary to exercise some care when modeling 

information with the expectation that it will be merged with other information.  Let’s 

suppose we have another modeling context, in which a company is managing a team of 

traveling salespersons. Each salesperson has a schedule of business trips. Some of the 

triples that define this model are as follows: 

sales:SalesPerson rdfs:subClassOf foaf:Person . 
sales:sells rdfs:domain sales:SalesPerson .  
sales:sells rdfs:range sales:ProductLine . 
sales:nextDeparture rdfs:domain sales:SalesPerson .  
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That is, we have a sales force that covers certain ProductLines; each member travels 

on a regular basis, and it is useful for us to track the date of the next departure of any 

particular SalesPerson.  

In the context of the Semantic Web, we are interested in the prospect of merging 

information from multiple sources. Suppose we were to merge the information for our 

sales force management with the schedules of the ocean liners. This merge only becomes 

interesting if we map some of the items in one model to items in another.  An obvious 

candidate for such a mapping is between sales:nextDeparture and ship:nextDeparture.  

Both refer to dates, and the intuition is that they specify the next departure date of 

something or someone. So a simple connection to make between the two models would 

be to link these two properties, e.g., 

sales:nextDeparture rdfs:subPropertyOf ship:nextDeparture . 
ship:nextDeparture rdfs:subPropertyOf sales:nextDeparture . 
 

using the mutual subPropertyOf pattern as described in section 6.4.4.1. The intuition 

here is that the two uses of nextDeparture, one for ships and the other for sales, are in fact 

the same.  

Let’s see what inferences are drawn from this merger.  Suppose we have a triple that 

describes a member of the sales force 

sales:Johannes sales:nextDeparture “May 31, 2008” . 
 

and we already have the triple about the QEII: 

ship:QEII ship:nextDeparture “Mar 4, 2010” . 
 

What inferences can we draw from these two triples?  Using first the 

rdfs:subPropertyOf inferences, then the rdfs:domain inferences, and finally using the 

rdfs:subClassOf triple with foaf:Person, we get the following inferred triples: 
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sales:Johannes ship:nextDeparture “May 31, 2008” . 
ship:QEII sales:nextDeparture “Mar 4, 2010” . 
sales:Johannes rdf:type ship:DepartingVessel . 
ship:QEII rdf:type sales:SalesPerson . 
ship:QEII rdf:type foaf:Person . 
 

These inferences start off innocently enough, but become more and more counter-

intuitive as they go on, and eventually (when the QEII is classified as a foaf:Person) 

becoming completely outrageous (or perhaps dangerously misleading, especially given 

that the Monarch herself might actually be a foaf:Person, causing the inferences to 

confuse the Monarch with the ship named after her). The asserted triples, and the 

inferences that can be drawn from them, are shown in Figure 6. 
 

 

Figure 6. Inferences resulting from merging two notions of nextDeparture. 
 

It is easy to lay the blame for this unfortunate behavior at the feet of the definition of 

rdfs:domain, but to do so would throw out the baby with the bathwater. The real issue in 

this example is that we have made a modeling error. The error resulted from the over-

zealous urge to jump to the conclusion that two properties should be mapped so closely to 

one another.  The ramifications of using subPropertyOf (or any other RDFS construct) 

can be subtle and far-reaching.  
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In particular, when each of these models stated their respective domain and range 

statements about sales:nextDeparture and ship:nextDeparture respectively, they were 

saying, “whenever you see any individual described by sales:nextDeparture (resp. 

ship:nextDeparture), that individual is known to be of type sales:SalesPerson (resp. 

ship:DepartingVessel)” This is quite a strong statement, and should be treated as such.  In 

particular, it would be surprising if two properties defined so specifically would not have 

extreme ramifications when merged.  

So what is the solution?  Refrain from merging properties? This is hardly a solution 

in the spirit of the Semantic Web. Avoid making strong statements about properties?  

This will not help us to make useful models. Change the RDFS standard so that we can’t 

make these statements? This is a bit extreme, but as we shall see, OWL does provide 

some more subtle constructs for property definitions that allow for finer-grained 

modeling. No, the solution lies in understanding the source of the modeling error that is 

at the heart of this example: we should refrain from merging things, like the two notions 

of nextDeparture, whose meanings have important differences.  

Using the idioms and patterns of RDFS shown in this chapter, there are more things 

we can do, depending on our motivation for the merger. In particular, we can still merge 

these two properties, but without making such a strong statement about their equivalence. 

If, for instance, we just want to merge the two notions of nextDeparture in order to 

drive a calendar application that shows all the departure dates for the sales force and the 

ocean liner fleet, then what we really want is a single property that will provide us the 

information we need (as we did in the property union pattern, section 6.4.4).  Rather than 
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mapping the properties from one domain to another, instead we map both properties to a 

third, domain-neutral property, thus: 

ship:nextDeparture rdfs:subPropertyOf cal:nextDeparture . 
sales:nextDeparture rdfs:subPropertyOf cal:nextDeparture . 
 

Note that the amalgamating property cal:nextDeparture needn’t have any domain 

information at all; after all, we don’t need to make any (further) inferences about the 

types of the entities that it is used to describe. Now we can infer that 

sales:Johannes cal:nextDeparture “May 31, 2008” . 
ship:QEII cal:nextDeparture “Mar 4, 2010” . 
 

A single calendar display, sorted by the property cal:nextDeparture, will show these 

two dates, but no further inference can be made.  In particular, no inferences will be made 

about considering the QEII as a member of the sales force or Johannes as a sailing vessel.  

What can we take from this example into our general semantic web modeling 

practice? Even with a small number of primitives, RDFS provides considerable subtlety 

for modeling relationships between different data sources. But with this power comes the 

ability to make subtle and misleading errors. The way to understand the meaning of 

modeling connections is by tracing the inferences. The ramifications of any modeling 

mapping can be worked through by following the simple inference rules of RDFS. 

6.7 Non-modeling Properties in RDFS 

In addition to the properties described so far, RDFS also provides a handful of 

properties that have no defined semantics; that is to say, that there are no inferences that 

derive from them. We already saw one example of such a property, rdfs:label, in section 

6.5.3. No inferences are drawn from rdfs:label, so in that sense it has no semantics. 
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Nevertheless it does by convention have a sort of procedural semantics, in that it 

describes the ways in which display agents interact with the model.  

6.7.1 Cross-referencing files: rdfs:seeAlso 

Every resource in a semantic web model is specified by a URI, which can also be de-

referenced and used as a URL. In the case where this URL resolves to a real document, 

this provides a place where defining information about a resource can be held.  

In some contexts, it might be useful to include some supplementary information 

about a resource for its use in a certain context.  This might include schematic 

information (e.g., if the resource itself is a property, the supplementary information could 

specify its subproperties), or related data (e.g., if the resource corresponds to a table from 

a database, the supplementary information could be the other tables from the same 

database). For such cases, rdfs:seeAlso provides a way to specify the web location of this 

supplementary information. rdfs:seeAlso has no formal semantic, so the precise behavior 

of any processor when it encounters rdfs:seeAlso is not specified.  

6.7.2 Organizing vocabularies: rdfs:isDefinedBy 

Just as rdfs:seeAlso can provide supplementary information about a resource, 

rdfs:isDefinedBy provides a link to the primary source of information about a resource. 

This allows modelers to specify where the definitional description of a resource can be 

found.  

6.7.3 Model documentation: rdfs:comment 

Just as in any computer language (modeling languages, markup languages, or 

programming languages), sometimes it is helpful if a document author can leave natural 
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language comments about a model for future readers to see. Since RDFS is implemented 

entirely in RDF, the comment feature is also implemented in RDF. To make a comment 

on some part of a model, simply assert a triple using the property rdfs:comment as 

predicate. For example: 

sales:nextDeparture rdfs:comment “This indicates the 
next planned departure date for a salesperson.” . 

6.8 Chapter Summary 

RDFS is the schema language for RDF; it describes constructs for types of objects 

(Classes), relating types to one another (subClasses), properties that describe objects 

(Properties) and relations between them (subProperty).  The Class system in RDFS 

includes a simple and elegant notion of inheritance, based on set inclusion; one class is a 

subclass of another means that instances of the one are also instances of the other. 

The RDFS language benefits from the distributed nature of RDF by being expressed 

in RDF itself. All schema information (classes, subclasses, subproperties, domain, range, 

etc.)  is expressed in RDF triples. In particular, this makes schema information, as well as 

data, subject to the AAA slogan; anyone can say anything, even about the schema.  

The semantics of RDFS is expressed through the mechanism of inferencing; that is, 

the meaning of any construct in RDFS is given by the inferences that can be inferred 

from it. It is this simple but powerful mechanism for specifying semantics that allows for 

the short and elegant definition of subclass and subproperty.  

RDFS also includes the constructs rdfs:domain and rdfs:range to describe the 

relationship between properties and classes. The meanings of these constructs are given 

by very simple rules, but these rules have subtle and far-reaching impact; the rules are 

simple, but the statements are powerful.  
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Even with its small set of constructs and simple rules, RDFS allows us to resolve a 

wide variety of integration issues. Whenever you might think of doing a global find-and-

replace in a set of structured data, consider using rdfs:subPropertyOf or rdfs:subClassOf 

instead. It may seem trivial to say that one should only merge entities from multiple 

sources that don’t have important differences. Using the inference mechanism of RDFS, 

we can determine just what happens when we do merge things, and judge whether the 

results are desirable or dangerous. While RDFS does not provide logical primitives like 

union and intersection, it is often possible to achieve desired inferences by using specific 

patterns of subClassOf and subPropertyOf. RDFS provides a framework through which 

information can flow; we can think of subClassOf and subPropertyOf as the IF-THEN 

facility of semantic modeling. This utility persists even when we move on to modeling in 

OWL. In fact, the use of subClassOf in this way provides a cornerstone of OWL 

modeling. 

When used in careful combination, the constructs of RDFS are particularly effective 

at defining how differently structured information can be used together in a uniform way. 

6.9 Fundamental Concepts 

The following fundamental concepts were introduced in this chapter: 

rdfs:subClassOf: Relation between classes, that the members of one class are 

included in the members of the other.  

rdfs:subPropertyOf: Relation between properties, that the pairs related by one 

property are included in the other.  

rdfs:domain and rdfs:range: Description of a property that determines class 

membership of individuals related by that property. 
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Logical operations (Union, Intersection, etc.) in RDFS: RDFS constructs can be 

used to simulate certain logical combinations of sets and properties.  
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