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4 Semantic Web Application Architecture 

So far, we have seen how RDF can represent data in a distributed way across the 

web. As such, it forms the basis for the semantic web, a web of data in which Anyone can 

say Anything about Any topic. The focus of this book is modeling on the semantic web; 

describing and defining distributed data in such a way that the data can be brought back 

together in a useful and meaningful way. In a book just about modeling, one could say 

that there is no room for a discussion of system architecture – the components of a 

computer system that can actually use these models in useful applications. But this book 

is for the Working Ontologist, who builds models so that they can be used. Used for 

what? For building some application that takes advantage of information distributed over 

the web. In short, to put the Semantic Web to work we need to describe, at least at a high 

level, the structure of a Semantic Web application. In particular, the components it is 

made of, what kinds of inputs it gets (and from where), how it takes advantage of RDF, 

and why this is different from more familiar application architectures.  

Many of the components of a Semantic Web application are provided both as 

supported products by companies specializing in Semantic Web technology, as well as by 

free software under a variety of licenses. New software is being developed both by 

research groups as well as product companies on an ongoing basis. We will not describe 

any particular tools in this chapter, but rather describe the types of components that make 

up a Semantic Web deployment, and how they fit together. 

RDF Parser/Serializer: In section Error! Reference source not found., we saw a 

number of serializations of RDF, including the W3C standard serialization in XML. An 

RDF Parser reads text in one (or more) of these formats, and interprets it as triples in the 
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RDF data model. An RDF serializer does it backwards; it takes a set of triples, and 

creates a file that expresses that content in one of the serialization forms  

RDF Store. In section Error! Reference source not found., we saw how RDF 

distributes data in the form of triples. An RDF Store (sometimes called a triple store) is a 

database that is tuned for storing and retrieving data in the form of triples. In addition to 

the familiar functions of any database, an RDF store has the additional ability to merge 

information from multiple data sources, as enabled by the RDF standard.  

RDF Query Engine. Closely related to the RDF store is the RDF Query engine. The 

query engine provides the capability to retrieve information from an RDF store according 

to structured queries.  

Application code. An application has some work that it does with the data is process; 

analysis, user interaction, archiving, etc. These capabilities are accomplished using some 

programming language that accesses the RDF store via queries (processed with the RDF 

Query Engine).  

Most of these components have corresponding components in a familiar relational 

data-backed application. The relational database iteself corresponds to the RDF store, in 

that it stores the data. The database includes a query language that corresponds to the 

query engine for accessing this data. In both cases, the application itself is written using a 

general-purpose programming language that makes queries and processes their results. 

The parser/serializer has no direct counterpart in a relational data-backed system, at least 

as far as standards go. There is no standard serialization of a relational data base that will 

allow it to be imported into a competing relational data base system without change of 

semantics.  
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In the following sections, we will examine each of these capabilities in detail. Since 

new products in each of these categories are being developed on a regular basis, we will 

describe them generically, and not refer to specific products.  

4.1 RDF Parser/Serializer 

How does an RDF-based system get started?  Where do the triples come from?  

There are a number of possible answers for this, but the simplest one is to find them 

directly on the web.  

At the time of this writing, Google was able to find millions of files with extension 

“.rdf”. Any of these could be a source of data for an RDF application.  But these files are 

useless, unless we have a program that can read them. That program is an RDF parser.  

RDF parsers take as their input a file in some RDF format.  Most parsers support the 

standard RDF/XML format, which is compatible with the more widespread XML 

standard. An RDF Parser takes such a file as input, and converts it into an internal 

representation of the triples that are expressed in that file. At this point, the triples are 

stored in the triple store, and are available for all the operations of that store.  

The triples at this point could also be serialized back out, either in the same text 

form, or another text form.  This is done using the reverse operation of the parser, the 

serializer. It is possible to take a “round trip” with triples using a parser and serializer; if 

you serialize a set of triples, then parse the resulting string with a corresponding parser 

(e.g.., an N3 parser for an N3 serialization), then the result is the same set of triples that 

the process began with.  Notice that this is not necessarily true if you start with a text file 

that represents some triples.  Even in a single format, there can be many distinct files that 

represent the same set of triples. Thus it is not, in general, possible to read in an RDF file 
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and export it again, and be certain that the resulting file will be identical (character by 

character) to the input file.  

4.1.1 Other data sources – converters and scrapers 

RDF Parsers and Serializers based on the standard representations of RDF are useful 

for the systematic processing and archiving of data in RDF.  But while there is 

considerable data available in these formats, even more data is not already available in 

RDF.  Fortunately, for many common data formats (e.g., tabular data), it is quite easy to 

convert these formats into RDF triples.   

In section 3.2XXX, we already saw how tabular data can be mapped into triples in a 

natural way. This approach can be applied to relational database or spreadsheets. Tools to 

perform a conversion based on this mapping, though not strictly speaking parsers, play 

the same role as a parser in a semantic solution; they connect the triple store with sources 

of information in the form of triples. Most RDF systems include a table input converter of 

some sort. Some tools specifically target relational databases, including appropriate 

treatment of foreign key references, while other work more directly with spreadsheet 

tables. Tools of this sort are called converters, since they typically convert information 

from some form into RDF, and often into a standard form of RDF like RDF/XML. This 

allows them to be used with any other tools that respect the RDF/XML standard. 

Another rich source of data for the semantic web can be found in existing web pages, 

that is, in HTML pages. Such pages often include structured information, like contact 

information, descriptions of events, product descriptions, publications, etc. This 

information can be combined in novel ways on the semantic web, once it is available in 

RDF. There are two different approaches to the problem of making use of HTML sources 
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for RDF data. The first approach assumes that the original author of the HTML document 

might have no interest or knowledge of RDF and the semantic web, and will create 

content accordingly.  This means that there are no annotations corresponding to 

predicates, no special structure of the HTML to make it especially “RDF-ready.” The 

second approach assumes that the content author is willing to put in a bit of effort to mark 

up the content in such a way that in addition to its use for display as HTML, it can also 

include information that allows the data to be interpreted also as RDF.  

Not surprisingly, the first approach received the most attention, especially as the 

semantic web began the bootstrapping process of gathering enough RDF data to begin the 

network effect. Legacy data had been represented in HTML before anyone knew 

anything about RDF.  How could that information be made available to the semantic web 

as RDF triples?    

The most “hands-off” approach to this problem is to use a program called a scraper. 

A scraper is a program that reads a source that was intended for human reading, typically 

an HTML page, and produces from it an RDF representation of that data.  The name 

“scraper” was inspired by the image of “scraping” useful information from a complex 

display like a web page.  

Scraper technology is continuing to develop. We will illustrate the basics with an 

early scraper system called Solver, which has been developed as part of the Simile 

project at MIT. Solvent provides a user interface for highlighting selected parts of a web 

page and translating the content into RDF. Figure 4-1 shows Solvent at work on a web 

page from the Los Angeles Metro Rail site.  Solvent is implemented as a Firefox plug-in, 

and appears as an extra panel at the bottom of the Firefox window. Solvent provides the 
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basic functions of a scraper. First, it allows the user to select an item on the web page; in 

the figure, the user has selected the name and address of one station.  The scraper then 

highlights all the items on the page that it determines to be “the same kind” of item; in 

this case, we see that Solvent has highlighted all the addresses of stations on the page in 

Yellow.  

 

Figure 4-1 Example of the Solvent interface working with the Los Angeles Metro web page 
 

The scraper then provides a way for the user to describe the selected data; in this 

example, the user specifies that “Allen Station” is the name of the first item, and that the 

next two lines “395 N> Allen Av. Pasadena 91106” is the address of the item.  The 

scraper extrapolates this information to find the name and address of all the stations. The 

details of how the Solvent user interface does this are not important; the fundamental 
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ideas are that a user specifies information about a single item on a web page, and the 

system uses that information to mark-up all the information on the page. The result is 

then expressed in RDF; in this example, Solvent produces the following RDF triples: 

metro:item0 
  rdf:type metro:Metro ; 
  dc:title "Allen Station" ; 
  simile:address "395 N. Allen Av., Pasadena 91106" . 
 
 
metro:item1 
  rdf:type metro:Metro ; 
  dc:title "Chinatown Station" ; 
  simile:address "901 N. Spring St., Los Angeles 
90012-1862" . 
 
 
metro:item2 
  rdf:type metro:Metro ; 
  dc:title "Del Mar Station" ; 
  simile:address "230 S. Raymond Av., Pasadena 91105-
2014" . 
 
(etc.) 
 
 

Scrapers differ in their user interfaces (for allowing users to specify items and their 

descriptions) and the sophistication with which they determine “similar” items on a page. 

A new development in web page deployment is a trend that goes by the name of 

“microformats.” The idea of a microformat is that some web page authors might be 

willing to put some structured information into their web page, to express its intended 

structure. To enable them to do this, a standard vocabulary (usually embedded in HTML 

as special tag attributes that have no impact on how a browser displays a page) is 

developed for commonly used items on a web page. Some of the first microformats were 

for business cards (including names, positions, companies and phone numbers in the 

controlled vocabulary) and events (including location, start time, and end time). The 
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growing popularity of microformats indicates that at least some web developers are 

willing to put in some extra effort to encode structured information into their HTML.  

The W3C has outlined a specification called GRDDL (Gleaning Resource 

Descriptions from Dialects of Languages) that provides a standard way to express a 

mapping from a microformat to RDF. GRDDL makes it possible to specify, within an 

HTML document, a recipe for translating the HTML data into RDF resources.  The 

transformations themselves are typically written in the XML stylesheet transformation 

language XSLT.  Existing XHTML documents can be made available to the semantic 

web simply by marking up the preamble to the documents with a few simple references 

to transformations.  

The W3C is also pursuing an alternate approach for allowing HTML authors to 

include semantic information in their web pages. One limitation of microformats is the 

need to specify a controlled vocabulary and write an XSLT script for GRDDL to use for 

that vocabulary. Wouldn’t it be better, if instead someone (like the W3C) would simply 

specify a single syntax for marking up HTML pages with RDF data?  Then there would 

be a single processing script for all microformats.  

The W3C has proposed just such a format called RDFa. The idea behind RDFa is 

quite simple; make use of the attribute tags in HTML to embed information that can be 

parsed into RDF. Just like microformats, RDFa has no effect on how a browser displays a 

page. Current versions of RDFa are quite difficult to use. It is unclear whether the 

microformat approach or the RDFa approach to embedding RDF information into web 

pages will dominate (or indeed, if either of them will; there really is no reason for the 
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web page development industry to make a choice. And something else might turn out to 

catch on better than either of these). 

All of these methods that allow web page developers to include structured 

information in their web pages have two advantages over scrapers and converters.  First,  

from the point of view of the system developer, it is easier to harvest the RDF data from 

pages that were marked up with structure data extraction in mind. But more importantly, 

from the point of view of the content author, it ensures that the interpretation of the 

information in the document, when rendered as RDF, matches the intended meaning of 

the document. This really is the spirit of the word Semantic in the Semantic Web;  that 

page authors be given the capability of expressing what they mean in a web page for a 

machine to read and use.  

4.2 RDF Store 

A database is a program that stores the data, making it available for future use. An 

RDF data storage solution is no different; the RDF data is kept in a system called an RDF 

store. It is typical for an RDF data store to be accompanied by a parser and serializer, to 

populate the store and publish information from the store respectively. Just as is the case 

for conventional (e.g., relational) data stores, an RDF store may also include a query 

engine as described in the next section.  Conventional data stores are differentiated based 

on a variety of performance features, including the volume of data that can be stored, the 

speed with which data can be accessed or updated, and the variety of query languages 

supported by the query engine.  These features are equally relevant when applied to an 

RDF store. 
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In contrast to a relational data store, an RDF store includes as a fundamental 

capability the ability to merge two data sets together. Because of the flexible nature of the 

RDF Data Model, the specification of such a merge operation is clearly defined. Each 

data store represents a set of RDF triples; a merger of two (or more) datasets is the single 

data set that includes all and only the triples from the source data sets. Any resources 

with the same URI (regardless of the originating data source) are considered to be 

equivalent in the merged data set. Thus, in addition to the usual means of evaluating a 

data store, an RDF store can be evaluated on the efficiency of the merge process.  

RDF store implementations range from custom programmed database solutions to 

fully-supported off-the-shelf products from specialty vendors. Conceptually, the simplest 

relational implementation of a triple store is as a single table with three columns, one 

each for the Subject, Predicate and Object of the triple. The information about the Los 

Angeles Metro given in Section 4.1.1 would be stored in such a table as follows: 

Subject Predicate Object 
metro:item0 rdf:type metro:Metro 
metro:item0 dc:title “Allen Station” 
metro:item0 simile:address "395 N. Allen Av., Pasadena 91106 
metro:item1 rdf:type metro:Metro 
metro:item1 dc:title “Chinatown Station” 
metro:item1 simile:address "901 N. Spring St., Los Angeles 90012-1862" 
metro:item2 rdf:type metro:Metro 
metro:item2 dc:title Del Mar Station 
metro:item2 simile:address 230 S. Raymond Av., Pasadena 91105-2014" 
                            . . .  

 

This representation should look familiar, as it is exactly the representation we used to 

introduce RDF triples in Chapter 3.  Since this is a relational database representation, it 

can be accessed using conventional relational database tools such as SQL. An 

experienced SQL programmer would have no problem writing a query to answer a 
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question like, “List the dc:title of every instance of metro:Metro in the table.” As an 

implementation representation, it has a number of apparent problems, including the 

replication of information in the first column, and the difficulty of building indexes 

around string values like URIs. On the other hand, in situations in which SQL 

programming experience is plentiful, this sort of representation has been used to create a 

custom solution in short order. 

It is not the purpose of this discussion to go into details of the possible optimizations 

of the RDF store. These details are the topic of the particular (often patented) solutions 

provided by a vendor of an off-the-shelf RDF store. In particular, the issue of building 

indices that work on URIs can be solved with a number of well-understood data 

organization algorithms. Serious providers of RDF stores differentiate their offerings 

based on the scalability and efficiency of these indexing solutions.  

4.2.1 RDF Data Standards and Interoperability of RDF Stores 

 
RDF stores bear considerable similarity to relational stores, especially in terms of 

how the quality of a store is evaluated.  A notable distinction of RDF stores results from 

the standardization of the RDF data model and RDF/XML serialization syntax. Several 

competing vendors of relational data stores dominate the market today, and have for 

several decades. While each of these products is based on the same basic idea of the 

relational algebra for data representation, it is a difficult process to transfer a whole 

database from one system to another.  That is, there is no standard serialization language 

with which one can completely describe a relational database, in such a way that it can be 

automatically imported into a competitor’s system. Such a task is possible, but it typically 
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requires a database programmer to track down the particulars of the source database to 

ensure that they are represented faithfully in the target system.  

The standardization effort for RDF makes the situation very different when it comes 

to RDF stores.  Just as for relational stores, there are several competing vendors and 

projects. In stark contrast to the situation for relational databases, the underlying RDF 

Data model is shared by all of these products, and even more specifically, all of them can 

import and export their data sets in the RDF/XML format.  This makes it a routine task to 

transfer an RDF data set – or indeed many RDF data sets – from one RDF store to 

another. This feature, which is a result of an early and aggressive standardization process, 

makes it much easier to begin with one RDF store, secure in the knowledge that the 

system can be migrated to another as the need arises.  It also simplifies the issue of 

federating data that is housed in multiple RDF stores, possibly coming from different 

vendor sources.  

4.3 RDF Query Engine 

An RDF store may be differentiated based on its performance, but it is typically 

accessed using a query language. In this sense, an RDF store is similar to a relational 

database or an XML store. Not surprisingly, in the early days of RDF, a number of 

different query languages were available, each supported by some RDF based product or 

open-source project. From the common features of these query languages, the W3C has 

undertaken the process of standardizing an RDF query language called SPARQL. In this 

section, we will cover the highlights of the SPARQL query language. While these 

highlights are typical of RDF query languages in general, each query language has its 

own distinguishing features, some of which we expect will be incorporated in due course 
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into the W3C standard recommendation.  We will describe SPARQL by example, based 

on the following set of 19 triples, shown here in N3 and in Figure 4-2 as a graph: 

lit:Shakespeare lit:wrote lit:AsYouLikeIt ; 
   lit:wrote lit:TwelfthNight; 
   lit:wrote lit:KingLear; 
   lit:wrote lit:LovesLaboursLost; 
   lit:wrote lit:Hamlet; 
   lit:wrote lit:TheTempest; 
   lit:wrote lit:WintersTale; 
   lit:wrote lit:HenryV; 
   lit:wrote lit:MeasureForMeasure; 
   lit:wrote lit:Othello ; 
   bio:livedIn geo:Stratford . 
bio:AnneHathaway bio:married lit:Shakespeare . 
geo:Stratford geo:isIn geo:England . 
geo:Scotland geo:partOf geo:UK . 
geo:England geo:partOf geo:UK . 
geo:Wales geo:partOf geo:UK . 
geo:NorthernIreland geo:partOf geo:UK . 
geo:ChannelIslands geo:partOf geo:UK . 
geo:IsleOfMan geo:partOf geo:UK . 
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Figure 4-2 Sample triples for SPARQL examples 
 

The basic building block of a SPARQL query is the triple pattern. A triple pattern 

looks just like a triple, but can have variables in place of resources in any of the three 

positions, Subject, Predicate, and Object.  Variables are indicated a symbols preceded by 

the special character ‘?’. The following are all valid triple patterns: 
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?w lit:wrote lit:KingLear . 
lit:Shakespeare ?r lit:KingLear . 
lit:Shakespeare lit:wrote ?p . 
 

The syntax for a triple pattern is intentionally very similar to the syntax for a triple in 

N3; a subject, predicate, object terminated by a period (“.”). Each of these patterns can be 

interpreted as a question in a natural way, respectively: 

Who wrote King Lear? 
What relationship did Shakespeare have to King Lear? 
What did Shakespeare write? 
 

A SPARQL query engine, given each of these queries and the sample graph from 

Figure 4-2 as input, will determine the results as indicated in Table 4-1. 

Triple pattern SPARQL result 

?w lit:wrote lit:KingLear . ?w = lit:Shakespeare 

lit:Shakespeare ?r lit:KingLear . ?r = lit:wrote 

lit:Shakespeare lit:wrote ?p . ?p = lit:AsYouLikeIt 
?p = lit:TwelfthNight 
?p = lit:KingLear 
?p = lit:LovesLaboursLost 
?p = lit:Hamlet 
?p = lit:TheTempest 
?p = lit:WintersTale 
?p = lit:HenryV 
?p = lit:MeasureForMeasure 
?p = lit:Othello 

Table 4-1 SPARQL results of various triple patterns on the sample input. 
 

Since a set of RDF triples is viewed as a graph, a more interesting query is one in 

which the query specifies a graph pattern. A graph pattern is specified as a set of triple 

patterns, with the stipulation that any variable that appears in two or more triple patterns 

must match the same resource in the graph. In SPARQL syntax, graph patterns are given 

as a list of triple patterns, enclosed within braces (“{“ and “}”). The following are valid 

graph patterns in SPARQL: 
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{?person lit:married ?s . 
 ?person lit:wrote ?lit:KingLear . } 
 
{?person bio:livedIn ?place . 
 ?place geo:isIn geo:England . 
 ?person lit:wrote lit:KingLear . } 
 
 

Informally, these queries ask, “Find a person who married someone and who also 

wrote King Lear” and “Find a person who lived in a place that is in England, and who 

also wrote King Lear.”  The meaning of a graph pattern is that all the triple patterns must 

match, and every occurrence of a single variable must match the same resource. Table 

4-2 shows the results of a SPARQL query engine for each of these graph patterns on the 

sample input. 

 

Graph pattern SPARQL result 

{?person lit:married ?s . 
 ?person lit:wrote ?lit:KingLear .} 

no results 

{?person bio:livedIn ?place . 
 ?place geo:isIn geo:England . 
 ?person lit:wrote lit:KingLear . } 

?person=Shakespeare 
?place=Stratford 

Table 4-2 SPARQL results of various graph patterns on the sample input 
 

The first result might seem a bit surprising; after all, Shakespeare wrote King Lear, 

and he married Anne Hathaway, right? This may well be true in the history books, but 

this information is not included in the sample graph.  The sample graph only shows that 

Anne Hathaway married Shakespeare; it has no knowledge that marriage is a symmetric 

union, so that Shakespeare must have also married Anne Hathaway.  We will see how to 

handle this sort of situation when we study the Web Ontology Language OWL in chapter 

7XXX. 
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SPARQL also includes a facility for matching one triple OR another triple. The 

syntax in SPARQL is to use the keyword UNION to specify alternative graph patterns. 

We can use this facility to resolve the issue of who married whom in the previous 

example. 

{ { {?spouse1 bio:married ?spouse2}   
    UNION {?spouse2 bio:married ?spouse1} } 
  {?spouse1 lit:wrote lit:KingLear}  } 
 

The syntax gets a bit involved, but this query searches for two spouses, one has 

married the other (in either order), and the (arbitrarily determined) first spouse happens to 

have written King Lear, as shown in Table 4-3 . 

Graph pattern SPARQL result 

{{{?spouse1 bio:married ?spouse2}   
   UNION {?spouse2 bio:married ?spouse1}} 
  {?spouse1 lit:wrote lit:KingLear}} 

?spouse1=Shakespeare 
?spouse2=AnneHathaway 

Table 4-3 Graph pattern built on UNION, and its results 

In these examples, we have shown the results of our SPARQL queries as binding 

lists, showing what value each variable is bound to. This mode of operation in SPARQL 

is called the SELECT form; that is, certain variables are selected from the graph pattern 

and all appropriate bindings for them are returned. In the context of an RDF store, the 

results of the query are returned in a more standard machine-readable form. The 

SPARQL standard includes the SPARQL Query Results XML Format for this purpose. 

The SELECT form in SPARQL can be thought of as converting a graph to a table; 

the graph pattern matches parts of the graph, and the resulting bindings are returned as a 

table of values for the corresponding variables. SPARQL also supports another mode of 

operation called the CONSTRUCT form. The CONSTRUCT form uses two graph 
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patterns, and produces a new graph built from the matches in the input graph. Variable 

bindings in both graph patterns must match the same resources in the graph.  

As an example of the use of the CONSTRUCT mode, let’s consider the reification 

patter from Section Error! Reference source not found., in which we represented the 

statement Wikipedia says Shakespeare wrote Hamlet with the triples  

q:n1 rdf:subject lit:Shakespeare ; 
 rdf:predicate lit:wrote ; 
 rdf:object lit:Hamlet . 

Then we can express the relation of Wikipedia to this statement as follows: 

web:Wikipedia m:says q:n1 . 

As we noted in Section Error! Reference source not found., the presence of these 

triples does not mean that the triple  

lit:Shakespeare lit:wrote lit:Hamlet . 

is present, just as the statement Wikipedia says Shakespeare wrote Hamlet does not 

necessarily mean that we believe that Shakespeare wrote Hamlet. We can use a SPARQL 

construct query to pick out all of the reified statement asserted by Wikipedia as follows:  

CONSTRUCT {?s ?p ?o} 
WHERE {?r rdf:subject ?s . 
    ?r rdf:predicate  ?p . 
    ?r rdf:object ?o .  
    web:Wikipedia m:says ?r .} 

This SPARQL query will construct the graph made up of all the statements that 

Wikipedia says. This kind of query allows an application to process reified statements 

according to whatever policy it wants to implement; an application that trusts Wikipedia 

can use this query to add the Wikipedia statements into its graph. An application that does 

not will refrain from using this query. 
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An RDF Query Engine is intimately tied to the RDF store. In order to solve a query, 

the engine relies on the indices and internal representations of the RDF store; the more 

finely tuned the store is to the query engine, the better its performance. For large scale 

applications, it is preferable to have an RDF store and query engine that retains its 

performance even in the face of very large data sets.  For smaller applications, other 

features (like cost, ease of installation, platform, and built-in integration with other 

enterprise systems) may dominate.  

4.3.1 Comparison to Relational Queries 

In many ways, an RDF query engine is very similar to the query engine in a 

relational data store; it provides a standard interface to the data, and defines a formalism 

by which data is viewed. A relational query language is based on the relational algebra of 

joins and foreign key references. RDF query languages look more like statements in 

predicate calculus.  Unification variables are used to express constraints between the 

patterns.  

A relational query describes a new data table that is formed by combining together 

two or more source tables. An RDF query (whether in SPARQL or another RDF query 

language) describes a new graph that is formed by describing a subset of a source RDF 

graph.  That graph, in turn, may be the result of having merged together several other 

graphs. The inherently recursive nature of graphs simplifies a number of detailed issues 

that arise in table-based queries.  For instance, there is no need in an RDF query language 

like SPARQL for a sub-query construct; the same effect can be achieved with a single 

query.  Similarly, there is nothing special about a “self-join” in an RDF query language.  
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In the special case in which an RDF store is implemented as a single table in a 

relational data base, any graph pattern match in such a scenario will constitute a self-join 

on that table.  Some end-developers choose to work this way in a familiar SQL 

environment. Oracle takes another approach to making RDF queries accessible to SQL 

programmers by providing its own RDF-based graph query language extension to its 

version of SQL, optimized for graph queries. The syntax of this language is graph-like 

(and hence more similar to SPARQL), but it is smoothly integrated with the table/join 

structure of SQL. 

4.4 Application Interface 

 
Database applications include more than just a database and query engine; they also 

include some application code, in an application environment, that performs some 

analysis on or displays some information from the database. The only access the 

application has to the database is through the query interface, as shown in Figure 

4-3

 

Figure 4-3 Application architecture for a database application 
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An RDF application has a similar architecture, but additionally includes all of the 

capabilities we have discussed so far:  

• RDF Parser and Serializer 

• Scrapers and Converters 

• RDF Merge functionality 

• RDF Query engine 

These capabilities interact with the application itself and the RDF store as shown in 

Figure 4-4. 

 

Figure 4-4 Application architecture for an RDF application 
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a conventional programming language (Java, C, Python and PERL are popular options). 
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how advanced dialects of SQL provide scripting capabilities for relational database 

applications.  

Regardless of the method by which the RDF store makes these functionalities 

available to the application, it is still the responsibility of the application to use them. 

Some examples of possible RDF applications include: 

• Calendar integration – show appointments from different people and teams 

on a single calendar view, 

• Map integration – show locations of points of interest gathered from different 

web sites, spreadsheets and databases all on a single map, 

• Annotation – allow a community of users to apply keywords to information 

(“tagging”) for others to consult, and 

• Content management – make a single index of information resources 

(documents, web pages, databases, etc.) that are available in several content 

stores, 

The application will decide what information sources need to be scraped or 

converted (e.g., diary entries in XML, lists of addresses from a web page, directory 

listings of content servers) . Depending on the volatility of the data, some of this process 

may even happen offline (e.g., the addresses of the Metro stations in Los Angeles are not 

likely to change for a while; this conversion could be done entirely outside the 

application context), while other data (like calendar data of team members) will have to 

be updated on a regular basis. Some data can remain in the RDF store itself (private 

information about this team); other data should be published in RDF form for other 

applications to use (information about the most popular documents in a repository).   
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Once all the required data sources have been scraped, converted, or parsed, the 

application uses the merge functionality of the RDF store to produce a single, federated 

graph of all the merged data. It is this federated graph that the application will use for all 

further queries.  There is no need for the queries themselves to be aware of the federation 

strategy or schedule; the federation has already taken place when the RDF merge was 

performed.  

From this point onward, the application behaves very like any other database 

application.  A web page to display the appointments of any member of a team will 

include a query for that information.  Even if the appointments came from different 

sources, and the information about team membership from still another source, the query 

is made against the federated information graph. 

4.4.1 RDF-backed Web Portals 

When the front-end of an application is a web server, the architecture shown in 

Figure 4-3 is the well-known architecture for a database-backed web portal.  The pages 

are generated using any of a number of technologies (e.g., CGI, ASP, JSP, ZOPE) that 

allow web pages to be constructed from the results of queries against a database. In the 

earliest days of the web, web pages were typically stored statically as files in a file 

system.  The move to database-backed portals was made to allow web sites to reflect the 

complex interrelated structure of data as it appears in a relational database.  

The system architecture outlined in Figure 4-4 can be used the same way to 

implement a semantic web portal. The RDF store plays the same role that the database 

plays in database-backed portals. It is important to note that because of the separation 

between the presentation layer in both Figure 4-3 and Figure 4-4, it is possible to use all 
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the same technologies for the actual web page construction for a semantic web portal as 

are used in a database-backed portal. However, because of the distributed nature of the 

RDF store that backs a semantic web portal, information on a single web page typically 

comes from multiple sources.  The merge capability of an RDF store supports this sort of 

information distribution as part of the infrastructure of the web portal.  When the portal is 

backed by RDF, there is no difference between building a distributed web portal and one 

in with all the information is local. Federated web portals are as easy as siloed portals. 

4.5 Data federation 

The RDF data model was designed from the beginning with data federation in mind. 

Information from any source is converted into a set of triples, so that data federation of 

any kind – spreadsheets and XML, database tables and webpages – is accomplished with 

a single mechanism.  As shown in Figure 4-4, this strategy of federation converts 

information from multiple sources into a single format, then combines all the information 

into a single store.  This is in contrast to a federation strategy in which the application 

queries each source using a method corresponding to that format. RDF does not refer to a 

file format or a particular language for encoding data, but rather to the data model of 

representing information in triples. It is this feature of RDF that allows data to be 

federated in this way. The mechanism for merging this information, and the details of the 

RDF data model, can be encapsulated into a piece of software – the RDF store – to be 

used as a building block for applications. 

The strategy of federating information first, then querying the federated information 

store, separates the concerns of data federation from the operational concerns of the 

application. Queries written in the application need not know where a particular triple 
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came from.  This allows a single query to seamlessly operate over multiple data sources 

without elaborate planning on the part of the query author.  This also means that changes 

to the application to federate further data sources will not impact the queries in the 

application itself.  

This feature of RDF applications forms the key to much of the discussion that 

follows. In our discussion of RDFS and OWL, we will assume that any federation 

necessary for the application has already taken place; that is, all queries and inferences 

will take place on the federated graph. The federated graph is simply the graph that 

includes information from all the federated data sources, over which application queries 

will be run.  

4.6 Chapter summary: RDF and Modeling 

The components described in this chapter – RDF parsers, serializers, stores and 

query engines – are not semantic models themselves; they are the components of a 

systme that will include semantic models.  Even the information represented in RDF does 

not necessarily a semantic model. These are the building blocks that go into making and 

using a semantic model.  The model will be represented in RDF, to be sure. As we shall 

see, the semantic modeling languages of the W3C, RDFS and OWL, are built entirely in 

RDF, and they can be federated, just like any other RDF data.  

Where do semantic models fit in to the application architecture of Figure 4-4? As 

data expressed in RDF, they will be housed in the RDF store, along with all other data. 

But semantic models are not simply data that will be used to answer a query, like the list 

of plays that shakespeare wrote or the places where paper machines are kept. Semantic 

models are meta-data; they are data that help to organize other data.  When we federate 
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information from multiple sources, the RDF data model allows us to represent all the data 

in a single, uniform way. But it does nothing to resolve any conflicts of meaning between 

the sources. Do two states have the same definitions of “marriage”? Is the notion of 

“writing” a play the same as the notion of “writing” a song? It is the semantic models that 

give answers to questions like these.  A semantic model acts as a sort of glue between 

disparate, federated data sources, so that we can describe how they fit together.  

Just as anyone can say anything about any topic, so also can anyway say anything 

about a model; that is, anyone can contribute to the definition and mapping between 

information sources.  In this way, not only can a federated, RDF-based, semantic 

application get its information from multiple sources, it can even get the instructions on 

how to combine information from mulitple sources.  In this way, the semantic web really 

is a web of meaning, with multiple sources describing what the information on the web 

means.  

4.7 Fundamental Concepts 

The following fundamental concepts were introduced in this chapter: 

RDF Parser/Serializer: A system component for reading and writing RDF in one of 

several file formats.  

RDF Store. A database that works in RDF. One of its main operations is to merge 

RDF stores. 

RDF Query Engine. Provides access to an RDF store, much as an SQL engine 

provides acccess to a relational store.  

SPARQL. W3C standard query language for RDF. 
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Application interface. The part of the application that uses the content of an RDF 

store in an interaction with some user.  

Scraper. A tool that extracts structured information from web pages.  

Converter. A tool that converts data from some form (e.g., tables) into RDF.  

 


