
1

3 RDF – the basis of the Semantic Web

When we speak of the “semantics” of a programming language, we usually refer to

the mapping from the language syntax to some formalism that expresses the “meaning”

of that language. For programming languages, this could be an abstract machine or a

specification in some operational calculus. When we speak of “semantics” of natural

language, we often refer to something about what it means to understand the utterance –

how to go from the structured letters or sounds in a language to some kind of meaning

behind them.

Perhaps the most primitive part of this notion of semantics is a representation of the

linkage of a term in a statement to the entity in the world that the term refers to. This

primitive notion of semantics – as referential semantics – is the one that motivates the

semantic web. While the study of symbols or “signs” and their relationship to the world

they represent has been studied extensively as the field of Semiotics, this book (and the

Semantic Web) is about modeling as a craft, rather than a semiotic exploration of the

nature of modeling. That is, given that symbols can refer to things in the world, how can

we build models from those symbols that help us to capture, understand and

communicate what we know about relationships between those things?

The web that we are accustomed to is made up of documents; these documents are

linked to one another. Any connection between a document and the thing(s) in the world

it describes is made only by the human who reads the document. There could be a link

from a document about Shakespeare to a document about Stratford on Avon, but there is

no notion of an entity that is Shakespeare, or linking it to the thing that is Stratford.

2

In the Semantic Web we refer to the things in the world as resources; a resource can

be anything that someone might want to talk about. Shakespeare, Stratford, “the value of

п” and “all the cows in Texas” are all examples of things someone might talk about, and

can be resources in the Semantic Web. This is admittedly a pretty odd use of the word

“resource;” but alternatives like “entity” or “thing” that might be more accurate, have

their own issues. In any case, resource is the word used in the Semantic Web standards.

In fact, the name of the base technology in the semantic web (RDF) uses this word in an

essential way. RDF stands for Resource Description Framework.

In a web of information, anyone can contribute to our knowledge about a resource –

it was this aspect of the current web that allowed it to grow at such an unprecedented rate.

In order to implement the Semantic Web, we need a model of data that allows

information to be distributed over the web.

3.1.1 Distributing Data across the Web

Data is most often represented in tabular form, in which each row represents some

item we are describing, and each column represents some property of those items. The

cells in the table are the particular values for those properties. Table 3-1 shows a sample

of some data about works completed around the time of Shakespeare.

ID Title Author Medium Year
1 As You Like It Shakespeare Play 1599
2 Hamlet Shakespeare Play 1604
3 Othello Shakespeare Play 1603
4 Sonnet 78 Shakespeare Poem 1609
5 Astrophil and Stella Sir Phillip Sidney Poem 1590
6 Edward II Christopher Marlowe Play 1592
7 Hero and Leander Christopher Marlowe Poem 1593
8 Greensleeves Henry VIII Rex Song 1525
Table 3-1. Tabular data about Elizabethan Literature and Music

3

Let’s consider a few different strategies for how this data could be distributed over

the web. In all of these strategies, some part of the data will be represented on one

computer, while other parts will be represented on another. Figure 3-1 shows one strategy

for distributing information over many machines. Each networked machine is

responsible for maintaining the information about one or more complete rows from the

table. Any query about an entity can be answered by the machine that stores its

corresponding row. One machine is responsible for information about “Sonnet 78”and

“Edward II”, while another is responsible for information about “As You Like It”.

This distribution solution provides considerable flexibility, since the machines can

share the load of representing information about several individuals. But because it is a

distributed representation of data, it requires some coordination between the servers. In

particular, each server must share information about the columns. Does the second

column on one server correspond to the same information as the second column on

another server? This is not an insurmountable problem, and in fact is a fundamental

problem of data distribution. There must be some agreed-upon coordination between the

servers. In this example, the servers need to have a way to specify, in a global way, which

property each column corresponds to.

4

1599PlayShakespeareAs You Like It1 1599PlayShakespeareAs You Like It1

Needs common schema - which

column is which?

1592PlayChristopher MarloweEdward II6

1609PoemShakespeareSonnet 784

1592PlayChristopher MarloweEdward II6

1609PoemShakespeareSonnet 784

1603PlayShakespeareOthello3

1593PoemChristopher MarloweHero and
Leander

7

1603PlayShakespeareOthello3

1593PoemChristopher MarloweHero and
Leander

7

Figure 3-1. Distributing data across the web, row by row.

Figure 3-2 shows another strategy, in which each server is responsible for one or

more complete columns from the original table. In this example, one server is responsible

for the publication dates and medium, while another server is responsible for titles. This

solution is flexible in a different way from the solution of Figure 3-1. The solution in

Figure 3-2 allows each machine to be responsible for one kind of information. If we are

not interested in the dates of publication, we needn’t consider information from that

server. If we want to specify something new about the entities (say, how many pages long

the manuscript is), we can add a new server with that information, without disrupting the

others.

This solution is similar to the solution in Figure 3-1 in that it requires some

coordination between the servers. In this case, the coordination has to do with the

identities of the entities to be described. How do I know that row 3 on one server refers to

5

the same entity as row 3 on another server? This solution requires a global identifier for

the entities being described.

Needs to reference entities –

which thing are we talking about?

Greensleeves

Hero and Leander

Edward II

Astrophil and Stella

Sonnet 78

Othello

Hamlet

As You Like It

Title

Greensleeves

Hero and Leander

Edward II

Astrophil and Stella

Sonnet 78

Othello

Hamlet

As You Like It

Title

Henry VIII Rex

Christopher
Marlowe

Christopher
Marlowe

Sir Phillip Sidney

Shakespeare

Shakespeare

Shakespeare

Shakespeare

Author

Henry VIII Rex

Christopher
Marlowe

Christopher
Marlowe

Sir Phillip Sidney

Shakespeare

Shakespeare

Shakespeare

Shakespeare

Author

Song1525

Poem1593

Play1592

Poem1590

Poem1609

Play1603

Play1604

Play1599

MediumYear

Song1525

Poem1593

Play1592

Poem1590

Poem1609

Play1603

Play1604

Play1599

MediumYear

Figure 3-2. Distributing data across the web, column by column.

The strategy outlined in Figure 3-3 is a combination of the previous two strategies, in

which information is neither distributed row by row, nor column by column, but instead it

is distributed cell by cell. Each machine is responsible for some number of cells in the

table. This system combines the flexibility of both of the previous strategies. Two servers

can share the description of a single entity (in the figure, the year and title of Hamlet are

stored separately), and they can share the use of a particular property (in the figure, the

Medium of rows 6 and 7 are represented on different servers). This flexibility is required

if we want our data distribution system to really support the AAA slogan that Anyone can

say Anything about Any topic. If we take the AAA slogan seriously, any server needs to

6

be able to make a statement about any entity (as is the case in Figure 3-2), but also any

server needs to be able to specify any property of an entity (as is the case in Figure 3-1).

The solution in Figure 3-3 has both of these benefits.

Needs to reference both schema

and entities
PoemRow 7

Medium

PoemRow 7

Medium

ShakespeareRow 4

Author

ShakespeareRow 4

Author

1604Row 2

Year

1604Row 2

Year

PlayRow 6

Medium

PlayRow 6

Medium

HamletRow 2

Title

HamletRow 2

Title

Figure 3-3. Distributing data across the web, cell by cell.

But this solution also combines the costs of the other two strategies. Not only do we

now need a global reference for the column headings, we also need a global reference for

the rows. In fact, each cell has to be represented with three values; a global reference for

the row, a global reference for the column, and the value in the cell itself.

This third strategy is the strategy taken by RDF. We will see how RDF resolves the

issue of global reference in Section 3.1.3; for now, we will focus on how a table cell is

represented and managed in RDF.

7

Since a cell is represented with three values, the basic building block for RDF is

called the triple. The identifier for the row is called the Subject of the triple (following

the notion from elementary grammar, since the subject is the thing that a statement is

about). The identifier for the column is called the Predicate of the triple (since columns

specify properties of the entities in the rows). The value in the cell is called the Object of

the triple. Table 3-2 shows the triples in Figure 3-3 as Subject, Predicate and Object:

Subject Predicate Object
Row 7 Medium Poem
Row 2 Title Hamlet
Row 2 Year 1604
Row 4 Author Shakespeare
Row 6 Medium Play
Table 3-2 Sample Triples

Triples become more interesting when more than one triple refers to the same entity,

e.g.,

Subject Predicate Object
Shakespeare Wrote King Lear
Shakespeare Wrote Macbeth
Anne Hathaway Married Shakespeare
Shakespeare Lived In Stratford
Stratford Is in England
Macbeth Set in Scotland
England Part of The UK
Scotland Part of The UK
Table 3-3. Sample triples.

When more than one triple refers to the same thing, sometimes it is convenient to

view the triples as a directed graph, in which each triple is an edge from its subject to its

object, with the predicate as the label on the edge, as shown in Figure 3-4.

8

Figure 3-4. Graph display of triples fromTable 3-3. Eight triples appear as eight

labelled edges.

The graph visualization in Figure 3-4 expresses the same information that is

presented in Table 3-3; but everything we know about Shakespeare (either as subject or

object) is displayed at a single node.

3.1.2 Merging data from multiple sources

We started off describing RDF as a way to distribute data over several sources. But

when we want to use that data, we will need to merge those sources back together again.

One value of the triples representation is the ease with which this kind of merger can be

accomplished. Since information is represented simply as triples, merged information

from two graphs is as simple as forming the graph of all of the triples from each

individual graph, taken together. Let’s see how this is accomplished in RDF.

Suppose that we had another source of information that was relevant to our example

from Table 3-3, e.g., a list of plays that Shakespeare wrote, or a list of parts of the United

Kingdom. These would be represented as triples thus:

Subject Predicate Object
Shakespeare Wrote As You Like It
Shakespeare Wrote Henry V
Shakespeare Wrote Love’s Labours Lost

9

Shakespeare Wrote Measure for Measure
Shakespeare Wrote Twelfth Night
Shakespeare Wrote Winter’s Tale
Shakespeare Wrote Hamlet
Shakespeare Wrote Othello
 etc.
Table 3-4. Triples about Shakespeare’s Plays

Subject Predicate Object
Scotland part Of The UK
England part Of The UK
Wales part Of The UK
Northern Ireland part Of The UK
Channel Islands part Of The UK
Isle of Man part Of The UK
Table 3-5. Triples about the parts of the United Kingdom

Each of these can also be shown as a graph, just as in the original table:

10

Figure 3-5. Graphic representation of triples describing Shakespeare’s plays and

parts of the UK.

What happens, when we merge together the information from these three sources?

We simply get the graph of all the triples that show up in any of Figure 3-4 and Figure

3-5. Merging graphs like those in Figure 3-4 and Figure 3-5 to create a combined graph

like the one shown in Figure 3-6 is a straightforward process, but only when it is known

which nodes in each of the source graphs match.

11

Figure 3-6. Combined graph of all triples about Shakespeare and the UK

3.1.3 Namespaces, URIs and Identity

That is, the essence of the merge comes down to answering the question, “when is a

node in one graph the same node as a node in another graph?” In RDF, this issue is

resolved through the use of Uniform Resource Identifiers, or URIs.

12

In the figures so far, we have labelled the nodes and edges in the graphs with simple

names, like Shakespeare or Wales. On the Semantic Web, this is not sufficient

information to determine whether two nodes are really the same. Why not? Isn’t there

just one thing in the universe that everyone agrees refer to as Shakespeare? When

referring to agreement on the web, never say, “everyone.” Somewhere, someone will

refer not to the historical Shakespeare, but to the title character of the feature film,

“Shakespeare in Love,” which bears very little resemblance to the historical figure. And

“Shakespeare” is one of the more stable concepts to appear on the web; consider the

range of referents for a name like “Washington” or “Bordeaux”. To merge graphs in a

semantic web setting, we have to be more specific; in what sense do we mean the word

Shakespeare?

RDF borrows its solution to this problem from foundational web technology, in

particular, the URI. The syntax and format of a URI is familiar even to casual users of the

web today, because of the special, but typical, case of the URL, e.g.,

http://www.WorkingOntologist.com/practice.html#Shakespeare. But the significance of

the URI as a global identifier for a web resource is often not appreciated. A URI

provides a global identification for a resource that is common across the web. If two

agents on the web want to refer to the same resource, recommended practice on the web

is for them to agree to a common URI for that resource. This is not a stipulation that is

particular to the Semantic Web, but to the web in general; global naming leads to global

network effects.

URIs and URLs look exactly the same, and in fact a URL is just a special case of the

URI. Why does the web have both of these ideas? The URI is simply an identifier with

13

global (i.e., “World Wide” in the “World Wide Web” sense) scope. Any two web

applications in the world can refer to the same thing by referencing the same URI. But

the syntax of the URI makes it possible to “dereference” it; that is, to use all the

information in the URI (which specifies things like server name, protocol, port number,

file name, etc) to locate a file (or a location in a file) on the web. This dereferencing

succeeds if all these parts work; the protocol locates the specified server running on the

specified port etc. When this is the case, then we can say that the URI is not just a URI

(Uniform Resource Indicator), but furthermore it is a URL (Uniform Resource Locator).

From the point of view of modeling, the distinction is not important. But from the point

of view of having a model on the Semantic Web, the fact that a URI can potentially be

dereferenced allows the models to participate in a global web infrastructure.

RDF applies the notion of the URI to resolve the identity problem in graph merging.

The application is quite simple; a node from one graph is merged with a node from

another graph, exactly if they have the same URI. On the one hand, this may seem

disingenuous, “solving” the problem of node identity by relying on another standard to

solve it. On the other hand, since issues of identity appear in the web in general, not just

in the Semantic Web, it would be foolish not to use the same strategy to resolve the issue

in both cases.

3.1.4 Expressing URIs in Print

URIs work very well for expressing identity on the World Wide Web, but they are

typically a bit of a pain to write out in detail when expressing models, especially in print.

So, for the examples in this book, we will use a simplified version of a URI abbreviation

scheme called qnames. In its simplest form, a URI expressed as a qname has two parts: a

Dean Allemang ! 7/3/07 5:40 PM
Comment: Put in an example of a mailto: URI, as
something that isn’t derefernecable

14

namespace and an identifier, written with a colon between. So the qname representation

for the identifier England in the namespace geo is simply geo:England. The RDF/XML

standard includes elaborate rules (summarized in appx X) that allow programmers to map

namespaces to other URI representations (such as the familiar http:// notation). For the

examples in this book, we will use the simple qname form for all URIs; but it is important

to note that qnames are not global identifiers on the web, only fully qualified URIs (e.g.,

http://www.WorkingOntologist.org/Examples/Chapter3/Shakespeare.owl#Shakespeare)

are global web names. Hence any representation of a qname must, in principle, be

accompanied by a declaration of the namespace correspondence.

It is customary on the Web in general, and part of the XML specification to insist

that URIs contain no embedded spaces. For example, an identifier “part of” is typically

not used in the Web. Instead, we follow the InterCap convention (sometimes called

CamelCase), whereby names that are made up of multiple words are transformed into

identifiers without spaces by capitalizing each word. Thus “part of” becomes “partOf”,

“Great Britain” becomes “GreatBritain”, “Measure for Measure” becomes

“MeasureForMeasure”, etc.

There is no limitation on the use of multiple namespaces in a single source of data, or

even in a single triple. Selection of namespaces is entirely unrestricted, as far as the data

model and standards are concerned. It is common practice, however, to refer to related

identifiers in a single namespace. For instance, all of the literary or geographical

information from Table 3-4 or Table 3-5 would be placed into one namespace per table,

with a suggestive name, say lit or geo respectively. Strictly speaking, these names

correspond to fully qualified URIs, e.g., lit stands for

15

http://www.WorkingOntologist.com/Examples/Chapter3/Shakespeare.owl# and geo

stands for http://www.WorkingOntologist.com/Examples/Chapter3/geography.owl#. For

the purposes of explaining modelling on the semantic web, the detailed URIs behind the

qnames are not important, so for the most part, we will omit these bindings from now on.

In many examples, we will take this notion of abbreviation one step further; in the cases

when we use a single namespace throughout one example, we will assume that there is a

default namespace declaration that allows us to refer to URIs simply with a symbolic

name preceded by a colon (“:”); e.g., :Shakespeare, :JamesDean, :Researcher.

Using qnames, our triple sets now look as follows:

Subject Predicate Object
lit:Shakespeare lit:wrote lit:AsYouLikeIt
lit:Shakespeare lit:wrote lit:HenryV
lit:Shakespeare lit:wrote lit:LovesLaboursLost
lit:Shakespeare lit:wrote lit:MeasureForMeasure
lit:Shakespeare lit:wrote lit:TwelfthNight
lit:Shakespeare lit:wrote lit:WintersTale
lit:Shakespeare lit:wrote lit:Hamlet
lit:Shakespeare lit:wrote lit:Othello
 etc.
Table 3-6. Plays of Shakespeare with qnames. Contrast Table 3-4.

Subject Predicate Object
geo:Scotland geo:partOf geo:UK
geo:England geo:partOf geo:UK
geo:Wales geo:partOf geo:UK
geo:NorthernIreland geo:partOf geo:UK
geo:ChannelIslands geo:partOf geo:UK
geo:IsleOfMan geo:partOf geo:UK
Table 3-7. Geographical information as qnames. Contrast Table 3-5

But it isn’t always that simple; some triples will have to use identifiers with different

namespaces, as in the following example taken from Table 3-3:

Subject Predicate Object

16

lit:Shakespeare lit:wrote lit:KingLear
lit:Shakespeare lit:wrote lit:MacBeth
bio:AnneHathaway bio:married lit:Shakespeare
bio:AnneHathaway bio:livedWith lit:Shakespeare
lit:Shakespeare bio:livedIn geo:Stratford
geo:Stratford geo:isIn geo:England
geo:England geo:partOf geo:UK
geo:Scotland geo:partOf geo:UK
Table 3-8. Triples referring to URIs with a variety of namespaces.

In Table 3-8, we introduced a new namespace, bio:, without specifying the actual

URI that it corresponds to. In order for this model to participate on the web, this

information has to be filled in. But from the point of view of modeling, this detail is

unimportant. For the rest of this book, we will assume that the prefixes of all qnames are

defined, even if that definition has not been specified explicitly in print.

3.1.5 Standard namespaces

Using the URI as a standard for global identifiers allows for a world-wide reference

for any symbol. This means that we can tell when any two people anywhere in the world

are referring to the same thing.

This property of the URI provides a simple way for a standards organization (like the

W3C) to specify the meaning of certain terms in the standard. As we will see in coming

chapters, the W3C standards provide definitions for terms like type, subClassOf, Class,

inverseOf, etc. But these standards are intended to apply globally across the Semantic

Web; so the standards refer to these reserved words in the same way as they refer to any

other resource on the Semantic Web, as URIs.

The W3C has defined a number of standard namespaces for use with Web

technologies, including xsd: for XML schema definition, xmlns: for XML namespaces,

etc. The Semantic Web is handled in exactly the same way, with namespace definitions

17

for the major layers of the Semantic Web. Following standard practice with the W3C, we

will use qnames to refer to these terms, using the following definitions for the standard

namespaces.

• rdf: indicates identifiers used in RDF. The set of identifiers defined in the

standard is quite small, and is used to define types and properties in RDF. The

global URI for the rdf namespace is http://www.w3.org/1999/02/22-rdf-syntax-

ns#.

• rdfs: indicates identifiers used for the RDF Schema language, RDFS. The scope

and semantics of the symbols in this namespace is the topic of future chapters.

The global URI for the rdfs namespace is http://www.w3.org/2000/01/rdf-

schema#.

• owl: indicates identifiers used for the Web Ontology Language OWL. The scope

and semantics of the symbols in this namespace is the topic of future chapters.

The global URI for the owl namespace is http://www.w3.org/2002/07/owl#.

These URIs provide a good example of the interaction between a URI and a URL.

For the purposes of modeling, any URI in one of these namespaces (e.g.,

http://www.w3.org/2000/01/rdf-schema#subClassOf, or rdfs:subClassOf for short) refers

to a particular term that the W3C makes some statements about in the RDFS standard.

But the term can also be dereferenced; that is, if we look at the server www.w3.org, there

is a page at the location 2000/01/rdf-schema with an entry about subClassOf, giving

supplemental information about this resource. From the point of view of modeling, it is

not necessary that it be possible to dereference this URI; but from the point of view of

web integration, it is critical that it is.

18

3.1.6 Identifiers in the RDF namespace

The RDF data model specifies the notion of triples and the idea of merging sets of

triples as shown above. With the introduction of namespaces, RDF uses the

infrastructure of the web to represent agreements on how to refer to a particular entity.

The RDF standard itself takes advantage of the namespace infrastructure to define a small

number of standard identifiers in a namespace defined in the standard, a namespace

called rdf.

rdf:type is a property that provides an elementary typing system in RDF. For

example, we can express the relationship between several playwrights using type

information.

Subject Predicate Object
lit:Shakespeare rdf:type lit:Playwright
lit:Ibsen rdf:type lit:Playwright
lit:Simon rdf:type lit:Playwright
lit:Miller rdf:type lit:Playwright
lit:Marlowe rdf:type lit:Playwright
lit:Wilder rdf:type lit:Playwright
Table 3-9. Using rdf:type to describe playwrights.

The subject of rdf:type in these triples can be any identifier, and the object is

understood to be a type. There is no restriction on the usage of rdf:type with types; types

can have types etc.:

Subject Predicate Object
lit:Playwrite rdf:type bus:Profession
bus:Profession rdf:type hr:Compensation

When we read a triple out loud (or just to ourselves) it is understandably tempting to

read it (in English, anyway) in subject-predicate-object order, so that the first triple in

Table 3-9 would read, “Shakespeare type Playwright.” Unfortunately, this is pretty

19

fractured syntax no matter how you inflect it. Better would be something like

“Shakespeare has type Playwright” or maybe “The type of Shakespeare is Playwright.”

This issue really has to do with the choice of name for the resource rdf:type; if it had been

called rdf:isInstanceOf instead, it would have been much easier to read out loud in

English. But since we never have control over how other entities (in this case, the W3C)

chose their names, we don’t have the luxury of changing these names. When we read out

loud, we just have to take some liberties in adding in connecting words; so this triple can

be pronounced “Shakespeare [has] type Playwright,” adding in the “has” (or sometimes,

the word “is” works better) to make the sentence into vaguely good English.

rdf:Property is an identifier that is used as a type in RDF to indicate when another

identifier is to be used as a predicate, rather than as a subject or an object. We can

declare all the identifiers we have used as predicates so far in this chapter:

Subject Predicate Object
lit:wrote rdf:type rdf:Property
geo:partOf rdf:type rdf:Property
bio:married rdf:type rdf:Property
bio:livedIn rdf:type rdf:Property
bio:livedWith rdf:type rdf:Property
geo:isIn rdf:type rdf:Property
Table 3-10. rdf:Property assertions for tables 5-8.

3.2 Challenge: RDF and Tabular data

We began this chapter by motivating RDF as a way to distribute data over the web,

in particular, tabular data. Now that we have all of the detailed mechanisms of RDF

(including namespaces and triples) in place, we can revisit tabular data and show how to

represent it consistently in RDF.

CHALLENGE

20

Given a table from a relational database, describing products, suppliers, and stocking

information about the products, e.g., as follows:

Product

ID Model
No. Division Product

Line
Manufacture
location SKU Available

1 ZX-3 Manufacturing
support

Paper
machine

Sacramento FB3524 23

2 ZX-3P Manufacturing
support

Paper
machine

Sacramento KD5243 4

3 ZX-3S Manufacturing
support

Paper
machine

Sacramento IL4028 34

4 B-1430 Control
Engineering

Feedback
Line

Elizabeth KS4520 23

5 B-1430X Control
Engineering

Feedback
Line

Elizabeth CL5934 14

6 B-1431 Control
Engineering

Active
Sensor

Seoul KK3945 0

7 DBB-12 Accessories Monitor Hong Kong ND5520 100

8 SP-1234 Safety Safety
Valve

Cleveland HI4554 4

9 SPX-
1234

Safety Safety
Valve

Cleveland OP5333 14

Table 3-11. Sample tabular data for triples.

Produce an RDF graph that reflects the content of this table in such a way that the

information intent is preserved, but the data is now amenable for RDF operations like

merging and RDF query.

SOLUTION

Each row in the table describes a single entity, all of the same type. That type is

given by the name of the table itself, Product. We know certain information about each

of these items, based on the columns in the table itself; e.g., the model number, the

division, etc. We want to represent this data in RDF.

21

Since each row represents a distinct entity, each row will have a distinct URI.

Fortunately, the need for unique identifiers is just as present in the database as it is in the

semantic web, so there is a (locally) unique identifier available, namely the primary table

key, in this case the column called ID. For the semantic web, we need a globally unique

identifier. The simplest way to form such an identifier is by having a single URI for the

database itself (perhaps even a URL if the database is on the web). Use that URI as the

namespace for all the identifiers in the database. Since this is a database for a

manufacturing company, let’s call that namespace mfg:.

Then we can create an identifier for each line by concatenating the table name,

“Product” with the unique key, and expressing this identifier in the mfg: namespace,

resulting in identifiers mfg:Product1, mfg:Product2, etc.

Each row in the table says several things about that item; namely, its Model number,

its division, etc. To represent this in RDF, each of these will be a property that will

describe the Products. But just as the case for the unique identifiers for the rows, we

need to have global unique identifiers for these properties. We can use the same

namespace as we did for the individuals, but since two tables could have the same

column name (but they aren’t the same properties!), we need to combine the table name

and the column name. This results in properties like mfg:Product_ModelNo,

mfg:Product_Division, etc.

With these conventions in place, we can now express all the information in the table

as triples. There will be one triple per cell in the table, that is, for n rows and c columns,

there will be n x c triples. The data shown in Table 3-11 has seven columns and nine

rows, so there are 63 triples, e.g.,

22

Subject Predicate Object
mfg:Product1 mfg:Product_ID 1
mfg:Product1 mfg:Product_ModelNo ZX-3
mfg:Product1 mfg:Product_Division Manufacturing

support
mfg:Product1 mfg:Product_Product_Line Paper Machine
mfg:Product1 mfg:Product_Manufacture_Location Sacramento
mfg:Product1 mfg:Product_SKU FB3524
mfg:Product1 mfg:Proudct_Available 23
mfg:Product2 mfg:Product_ID 2
mfg:Product2 mfg:Product_ModelNo ZX-3P
mfg:Product2 mfg:Product_Division Manufacturing

support
mfg:Product2 mfg:Product_Product_Line Paper Machine
mfg:Product2 mfg:Product_Manufacture_Location Sacramento
mfg:Product2 mfg:Product_SKU KD5243
mfg:Product2 mfg:Proudct_Available 4

. . .
Table 3-12. Triples representing some of the data in Table 3-11.

The triples in Table 3-12 are a bit different from the triples we have seen so far;

while the subject and predicate of these triples are RDF resources (complete with qname

namespaces!), the objects are not resources, but instead are literal data, i.e., strings,

integers, etc. This should come as no surprise, since after all, RDF is a data

representation system. RDF borrows from XML all the literal data types as possible

values for the object of a triple; in this case, the types of all data are strings or integers.

The usual interpretation of a table is that each row in the table corresponds to one

individual, and that the type of these individuals corresponds to the name of the table. In

the example from Table 3-11, each row corresponds to a Product. We can represent this

in RDF by adding one triple per row that specifies the type of the individual described by

each row, as follows:

Subject Predicate Object
mfg:Product1 rdf:type mfg:Product
mfg:Product2 rdf:type mfg:Product
mfg:Product3 rdf:type mfg:Product

23

mfg:Product4 rdf:type mfg:Product
mfg:Product5 rdf:type mfg:Product
mfg:Product6 rdf:type mfg:Product
mfg:Product7 rdf:type mfg:Product
mfg:Product8 rdf:type mfg:Product
mfg:Product9 rdf:type mfg:Product
Table 3-13. Triples representing type information from Table 3-11.

The full complement of triples from the translation of the information in Table 3-11

is shown in Figure 3-7. The type (i.e., where the predicate is rdf:type and the object is the

class mfg:Product) are shown as links in the graph; triples in which the object is a literal

datum are shown (for sake of compactness in the figure) within a box labeled by their

common subject.

24

Figure 3-7 Graphical version of the tabular data from Table 3-11.

3.3 Higher-order relationships

It is not unusual for someone who is building a model in RDF for the first time to

feel a bit limited by the simple Subject/Predicate/Object form of the RDF triple. They

don’t want to just say that Shakespeare wrote Hamlet, they want to qualify this statement,

and say that Shakespeare wrote Hamlet in 1604, or that Wikipedia states that

Shakespeare wrote Hamlet in 1604. In general, these are cases in which it is, or at least

25

seems, desirable to make a statement about another statement. This process is called

reification.

Reification is not a problem specific to semantic web modeling; the same issue arises

in other data modeling contexts like relational databases and object systems. In fact, one

approach to reification in the semantic web is to simply borrow the standard solution that

is commonly used in relational database schemas, using the conventional mapping from

relational tables to RDF given in the challenge above. In a relational database table, it is

possible to simply create a table with more columns to add additional information about a

triple. So the statement Shakespeare wrote Hamlet is expressed (as in Table 3-1) in a

single row of a table, where there is a column for the author of a work and another

column for its title. Any further information about this event is done with another column

(again, just as in Table 3-1). When this is converted to RDF according to the example in

the Challenge, the row is represented by a number of triples, one triple per column in the

database. The subject of all of these triples is the same; a single resource that corresponds

to the row in the table. An example of this can be seen in Table 3-12, where several

triples have the same subject and one triple apiece for each column in the table. This

approach to reification has a strong pedigree in relational modeling, and has worked well

for a wide range of modeling applications. It can be applied in RDF even when the data

has not been imported from tabular form. That is, the statement Shakespeare wrote

Hamlet in 1601 (disagreeing with the statement in Table 3-2) can be expressed with three

triples

26

bio:n1 bio:author lit:Shakespeare ;
 bio:title “Hamlet” ;
 bio:publicationDate 1601 .

This approach works well for examples like Shakespeare wrote Hamlet in 1601, in

which we want to express more information about some event or statement. It doesn’t

work so well in cases like Wikipedia says Shakespeare wrote Hamlet, in which we are

expressing information about the statement itself, “Shakespeare wrote Hamlet”. This

kind of metadata about statements often takes the form of provenance (information about

the source of a statement, as in this example), likelihood (expressed in some quantitative

form like probability, e.g., It is 90% probable that Shakespeare wrote Hamlet), context

(specific information about a project setting in which a statement holds, e.g., Kenneth

Branagh played Hamlet in the Movie), or time frame (Hamlet plays on Broadway Jan 11

through March 12). In such cases, it is useful to explicitly make a statement about a

statement. This process, called explicit reification, is supported by the W3C RDF

standard with three resources called rdf:subject, rdf:predicate and rdf:object.

Let’s take the example of Wikipedia says Shakespeare wrote Hamlet. Using the RDF

standard, we can refer to a triple as follows:

q:n1 rdf:subject lit:Shakespeare ;
 rdf:predicate lit:wrote ;
 rdf:object lit:Hamlet .

Then we can express the relation of Wikipedia to this statement as follows:

web:Wikipedia m:says q:n1 .

Notice that just because we have asserted the reification triples about q:n1 above, it

is not necessarily the case that we have also asserted the triple itself,

27

lit:Shakespeare lit:wrote lit:Hamlet .

This is as it should be; after all, if an application does not trust information from the

Wikipedia, then it should not behave as though that triple has been asserted. An

application that does trust Wikipedia will want to behave as though it had.

3.4 Alternatives for serialization

So far, we have expressed RDF triples in Subject/Predicate/Object tabular form or as

graphs of boxes-and-arrows. While these are simple and apparent forms to display triples,

they aren’t always the most compact forms, or even the most human-friendly form, to see

the relations between entities.

The issue of representing RDF in text doesn’t only arise in books and documents

about RDF; it also arises when we want to publish data in RDF on the web. In response

to this need, there are multiple ways of expressing RDF in textual form.

3.4.1 N-triples

The simplest form is call ntriples, and corresponds most directly to the raw RDF

triples. It refers to resources using their fully unabbreviated URIs. Each URI is written

between angle-brackets (“<” and “>”). Three resources are expressed in Subject,

Predicate, Object order, followed by a period “.” For example, if the namespace “mfg”

corresponds to http://www.WorkingOntologist.com/Manufacture.rdf, then the first triple

from Table 3-13 is written in ntriples as

<http://www.WorkingOntologist.com/Manufacture.rdf#Product1>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.WorkingOntologist.com/Manufacture.rdf#Product> .

28

It is fortunate that the N-triples serialization allows new lines between resources;

only the period at the end indicates the end of a triple. Otherwise, it would often be

difficult to fit a triple onto a single line!

3.4.2 Notation 3 RDF (N3)

In this book, we will use a more compact serialization of RDF called Notation 3

RDF (or N3 for short), developed by Tim Berners-Lee. N3 combines the apparent display

of triples from ntriples with the terseness of qnames. We will introduce N3 in this

section, and describe just the subset required for the current examples. We will describe

more of the language as needed for later examples. For a full description of N3, see [2].

Since N3 uses qnames, there must be a binding between the (local) qnames and the

(global) URIs. Hence N3 begins with a preamble in which these bindings are defined; for

example, we can define the qnames needed in the Challenge example with the following

preamble:

@prefix mfg: <http://www.WorkingOntologist.com/Manufacturing.rdf#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

Once the local qnames have been defined, N3 provides a very simple way to express

a triple by listing three resources, using qname abbreviations, in Subject/Predicate/Object

order, followed by a period (“.”), e.g.:

mfg:Product1 rdf:type mfg:Product .

It is quite common (especially after importing tabular data), to have several triples

that share a common subject. N3 provides for a compact representation of such data. It

begins with the first triple in Subject/Predicate/Object order, as before; but instead of

terminating with a period, uses a semicolon (“;”) to indicate that another triple with the

29

same subject follows. For that triple, only the Predicate and Object need to be specified

(since it is the same subject from before). The information in Table 3-12 and Table 3-13

about Product1 and Product2 appears in N3 as follows:

mfg:Product1 rdf:type mfg:Product;
 mfg:Product_Division "Manufacturing support";
 mfg:Product_ID "1";
 mfg:Product_Manufacture_Location "Sacramento";
 mfg:Product_ModelNo "ZX-3";
 mfg:Product_Product_Line "Paper Machine";
 mfg:Product_SKU "FB3524";
 mfg:Product_Available "23".
mfg:Product2 rdf:type mfg:Product;
 mfg:Product_Division "Manufacturing support";
 mfg:Product_ID "2";
 mfg:Product_Manufacture_Location "Sacramento";
 mfg:Product_ModelNo "ZX-3P";
 mfg:Product_Product_Line "Paper Machine";
 mfg:Product_SKU "KD5243";
 mfg:Product_Available "4".

When there are several triples that share both subject and predicate, N3 provides a

compact way to express this as well, so that neither the subject nor the predicate needs to

be repeated. N3 uses a comma (“,”) to separate the objects. So the fact that Shakespeare

had three children named Susanna, Judith and Hamnet can be expressed as follows:

lit:Shakespeare b:hasChild b:Susanna , b:Judith , b:Hamnet .

There are actually three triples represented here, namely

lit:Shakespeare b:hasChild b:Susanna .
lit:Shakespeare b:hasChild b:Judith .
lit:Shakespeare b:hasChild b:Hamnet .

N3 provides some abbreviations to improve terseness and readability; in this book,

we will use just a few of these. One of most widely used abbreviation is to use the word

“a” to mean “rdf:type”. The motivation for this is that in common speech, we are likely to

say, “Product1 is a Product” or “Shakespeare is a playwright” for the triples

30

mfg:Product1 rdf:type mfg:Product .
lit:Shakespeare rdf:type lit:Playwright .

respectively. Thus we will usually write instead:

mfg:Product1 a mfg:Product .
lit:Shakespeare a lit:Playwright .

3.4.3 RDF/XML

While N3 is convenient for human consumption, and is more compact for the printed

page, many web infrastructures are accustomed to representing information in HTML, or

more generally, XML. For this reason, the W3C has recommended the use of an XML

serialization of RDF called RDF/XML. The information about Product1 and Product2

shown above looks as follows in RDF/XML. In this example, the subjects (Product1 and

Product2) are referenced using the XML attribute rdf:about; the triples with each of these

as subjects appear as sub-elements within these definitions. The complete details of the

RDF/XML syntax are beyond the scope of this discussion, and can be found in

[http://www.w3.org/TR/rdf-syntax-grammar/].

31

<rdf:RDF

xmlns:mfg="http://www.WorkingOntologist.com/Manufacturing.rdf#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
>
 <mfg:Product
rdf:about="http://www.WorkingOntologist.com/Manufacturing.rdf#Pro
duct1">
 <mfg:Available>23</mfg:Available>
 <mfg:Division>Manufacturing support</mfg:Division>
 <mfg:ProductLine>Paper machine</mfg:ProductLine>
 <mfg:SKU>FB3524</mfg:SKU>
 <mfg:ModelNo>ZX-3</mfg:ModelNo>
 <mfg:ManufactureLocation>Sacramento</mfg:ManufactureLocation>
 </mfg:Product>
 <mfg:Product
rdf:about="http://www.WorkingOntologist.com/Manufacturing.rdf#Pro
duct2">
 <mfg:SKU>KD5243</mfg:SKU>
 <mfg:Division>Manufacturing support</mfg:Division>
 <mfg:ManufactureLocation>Sacramento</mfg:ManufactureLocation>
 <mfg:Available>4</mfg:Available>
 <mfg:ModelNo>ZX-3P</mfg:ModelNo>
 <mfg:ProductLine>Paper machine</mfg:ProductLine>
 </mfg:Product>
</rdf:RDF>

The same information is contained in the RDF/XML form as in the N3, including the

declarations of the qnames for mfg: and rdf:. RDF/XML includes a number of rules for

determining the fully qualified URI of a resource mentioned in an RDF/XML document.

These details are quite involved, and will not be used for the examples in this book.

3.5 Blank nodes

So far, we have described how RDF can represent sets of triples, in which each

subject, predicate and object is either a resource or (in the case of the object of a triple) a

literal data value. Each resource is given an identity according to the web standard for

identity, the URI. RDF also allows for resources that do not have any web identity at all.

Why would we want to represent a resource that has no identity on the web?

32

Sometimes we know that something exists, and we even know some things about it,

but we don’t know its identity. For instance, suppose we want to represent the fact that

Shakespeare had a mistress, whose identity remains unknown. But we know a few things

about her; she was a woman, she lived in England, and she was the inspiration for Sonnet

78.

It is simple enough to express these statements in RDF, but we need an identifier for

the mistress. In N3, we could express them as follows:

lit:Mistress1 rdf:type bio:Woman;
 bio:LivedIn geo:England .
lit:Sonnet78 lit:hasInspiration lit:Mistress1 .

But if we don’t want to have an identifier for the mistress, how can we proceed?

RDF allows for a “blank node”, or bnode for short, for such a situation. If we were to

indicate a bnode with a “?”, the triples would look as follows:

? rdf:type bio:Woman;
 bio:livedIn geo:England .
lit:Sonnet78 lit:hasInspiration ? .

The use of the bnode in RDF can essentially be interpreted as a logical statement,

“there exists.” That is, in these statements we assert “there exists a woman, who lived in

England, who was the inspiration for Sonnet 78.”

But this notation (which does not constitute a valid N3 expression) has a problem; if

there is more than one blank node, how do we know which “?” references which node?

For this reason, N3 instead includes a compact and unambiguous notation for describing

blank nodes. A blank node is indicated by putting all the triples of which it is a subject

between square brackets, [and] thus:

33

[rdf:type bio:Woman;
 bio:livedIn England]

It is customary, though not required, to leave blank space after the opening bracket,

to indicate that we are acting as if there were a subject for these triples, even though none

is specified.

We can refer to this blank node in other triples by including the entire bracketed

sequence in place of the blank node. Furthermore, the abbreviation of “a” for “rdf:type”

is particularly useful in this context. Thus our entire statement about the mistress who

inspired Sonnet 78 looks as follows in N3:

lit:Sonnet78 lit:hasInspiration [a Woman;
bio:livedIn England] .

This expression of RDF can be read almost directly as plain English: “Sonnet78 has

[as] inspiration a Woman [who] lived in England.” The identity of the woman is

indeterminate. The use of the bracket notation for blank nodes will become particularly

important when we come to describe OWL, the Web Ontology Language, since it makes

very particular use of bnodes.

3.5.1 Ordered information in RDF

The children of Shakespeare appear in a certain order on the printed page, but from

the point of view of RDF, they are in no order at all; there are just three triples, one

describing the relationship between Shakespeare and each of his children. What if we did

want to specify an ordering among them – how can we do it in RDF?

RDF provides a facility for ordering elements in a list format. An ordered list can be

expressed quite easily in N3 as follows:

34

lit:Shakespeare b:hasChild (b:Susanna b:Judith b:Hamnet) .

This translates into the following triples, where _:a, _:b and _:c are bnodes:

lit:Shakespeare b:hasChild _:a .
_:a rdf:first b:Susanna .
_:a rdf:rest _:b .
_:b rdf:first b:Judith .
_:b rdf:rest _:c .
_:c rdf:rest rdf:nil .
_:c rdf:first b:Hamnet .

This rendition preserves the ordering of the objects, but at a cost of considerable

complexity of representation. Fortunately, the N3 representation is quite compact, so that

it is not usually necessary to remember the details of the RDF triples behind it.

3.6 RDF Summary

RDF is, first and foremost, a system for modeling data. It gives up in compactness

what it gains in flexibility. Every relationship between any two data elements is

explicitly represented, allowing for a very simple model of merging data. There is no

need to arrange the columns of tables so that they “match up”, or to worry about data

“missing” from a particular column; a relationship (expressed in a familiar form of

Subject/Predicate/Object) is either present or it is not. Merging data is thus reduced to a

simple matter of considering all such statements from all sources, together in a single

place.

The only challenge that remains in such a system is the challenge of identity. How do

we have a global notation for the identity of any entity? Fortunately, this problem is not

unique to the RDF data model; the infrastructure of the web itself has the same issue, and

has a standard solution – the URI. RDF borrows this solution.

35

Since RDF is a web language, a fundamental consideration is the distribution of

information from multiple sources – across the web. On the web, the AAA slogan holds -

anyone can say anything about any topic. RDF supports this slogan by allowing any data

source to refer to resources in any namespace. Even a single triple can refer to resources

in multiple namespaces.

As a data model, RDF provides a clear specification of what has to happen, to merge

information from multiple sources. It does not provide algorithms or technology to

implement those processes. These technologies are the topic of the next chapter.

3.7 Fundamental Concepts

The following fundamental concepts were introduced in this chapter:

RDF: The Resource Description Framework. Distributes data on the web.

Triple: The fundamental data structure of RDF. A triple is made up of a subject,

predicate and an object.

Graph: A nodes-and-links structural view of RDF data.

Merging: The process of treating two graphs as if they were one.

URI: Uniform Resource Indicator. A generalization of the URL (Uniform Resource

Locator). A global name on the web.

namespace: a set of names that belong to a single authority. Namespaces allow

different agents to use the same word in different ways.

qname: An abbreviated version of a URI, made up of a namespace identifier and a

name, separated by a colon.

rdf:type. The relationship between an instance and its type.

36

rdf:Property. The type of any property in RDF.

Reification. The practice of making a statement about another statement. Done in

RDF using rdf:subject, rdf:predicate, and rdf:object. .

Ntriples, N3, RDF/XML. Serialization syntaxes for RDF.

Blank nodes. RDF nodes that have no URI, and hence cannot be referenced globally.

Used to stand in for anonymous entities.

37

