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15 OWL Levels and Logic 

This book is about modeling in the context of the semantic web, in particular, using 

the W3C languages RDF, RDFS and OWL to build and distribute those models. The 

meaning of these models is given by the inferences that each of these languages define 

for the models.  RDFS provides rudimentary inferencing about types based on class 

membership and properties. OWL provides a wide array of more advanced modeling 

features to describe how data can be related.  

In Error! Reference source not found., we introduced a subset of OWL that we 

called RDFS-Plus. There are a number of reasons why someone might define a subset of 

a language like OWL. In the case of RDFS-Plus, we were interested in a subset of the 

language that has considerable utility for semantic modeling, but does not place a large 

burden on either a modeler or someone trying to understand a model. RDFS-Plus 

includes features that are similar to what can be found in familiar data representation 

systems like relational database and object-oriented systems. Researchers, implementers 

and product developers have defined a number of subsets based on modeling 

expressivity, computational complexity, and often, based on what parts of the OWL 

language can best be handled by whatever inferencing system they already have.  

In the initial OWL specification, the W3C identified three particular variants (or 

“species”) of OWL, which they called OWL-Lite, OWL-DL and OWL-Full. The 

distinction between OWL-DL and OWL-Full is particularly subtle, and is the topic of 

much of this chapter. We will examine the motivations behind these variants, and the 

ramifications these motivations have in terms of technology and modeling style. 
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Any language will grow as it is used. A semantic web language, even more so. 

Realizing this, the W3C processes encourage the evolution of languages to provide new 

functionality while mainting backward backward compatibility. As we shall see, there are 

a number of useful modeling idioms that are clumsy or impossible in the current 

definintion of OWL. This chapter outlines the particular features that are being 

considered in the ongoing process in the W3C for the OWL Recommendation.1  

15.1 OWL dialects and Modeling philosophy 

The original OWL standard defined three subsets of OWL: OWL-Lite, OWL-DL 

and OWL-Full.  The most subtle distinction is that between OWL-Full and OWL-DL. 

The distinction is primarily one of modeling philosophy – what do we expect of our 

models? 

Normally when we refer to different subsets of a language, we can list the language 

structures in one subset that are not found in the other.  For instance, RDFS has 

rdfs:domain, rdfs:range, rdfs:subPropertyOf, etc., while RDFS-Plus has all of those, plus 

some new language features like owl:inverseOf and owl:TransitiveProperty. We can 

define how these two languages are similar or different, based on which language terms 

are available in each one.  

In the case of OWL-Full and OWL-DL, the situation is more subtle. Both OWL-Full 

and OWL-DL use exactly the same set of modeling constructs. That is, if we were to list 

all the properties and classes that make up OWL-Full, and make the same list for OWL-

DL, it would be the same list. In fact, that list is just the list of OWL features you have 

                                                
1 Progress and status of the OWL Recommendation is documented at http://www.w3.org/2004/OWL 
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read about in this book. Everything you have learned applies equally well to OWL-Full 

and to OWL-DL.  

So what is the difference?  What was so important that the W3C saw fit to make two 

distinct standards, if they have the same language constructs, with the same meaning? 

The distinction between these two variants – or “species” as they are often called – of 

OWL has to do with how the language constructs are used. The differences in allowed 

usage are motivated by a difference in the basic philosophy of why one builds models for 

the semantic web. We will outline these two basic philosophies – one in which emphasis 

is placed on having models that are provable, and the other in which emphasis is placed 

on making models that are executable. We examine each of these in turn, along with the 

intuitions that motivate them. 

15.1.1 Provable models 

An important motivation for formal modeling (as opposed to informal modeling) is 

to be precise about what our models mean. In the context of the Semantic Web, this 

allows us to know precisely and without doubt when concepts coming from two different 

sources refer to the same thing.  Does my notion of James Dean movie correspond to 

yours?  A formal description can help us determine whether or not this is the case. My 

definition of James Dean movie is one that stars James Dean; yours might include movies 

about James Dean, or maybe movies with the words “James Dean” in the title. How can 

we tell, if we just have the name “James Dean Movie”?  A formal model makes these 

things clearer. Then it becomes a simple matter of automation to decide whether two 

classes are the same, or if one subsumes the other, or if they are unrelated.  
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It is this aspect of modeling that motivates a logical definition of OWL. Each 

construct in OWL is a statement in a formal logic. The particular logical system of OWL-

DL is called Description Logic. As the name suggests, Description Logic is a logical 

system with which formal descriptions of classes, individuals and the relationships 

between them can be made. The inferences in OWL that have formed the basis of the 

bulk of this book are formally defined by a model theory based on Description Logic.  

Using logic as the foundation of a modeling language makes perfect sense; we can 

draw upon decades or even centuries of development work in logical formalism. The 

properties of various logical structures are well-understood. Logic provides a framework 

for defining all of the inferences that our modeling language will need. But there is one 

fly in the ointment. In a computational setting like the web, we would like our logic to be 

processed automatically by a computer. Specifically, we want a computer to be able to 

determine all of the inferences that any given model entails. That is, we want to be able to 

automatically determine whether my notion of James Dean movie is the same, more 

general, or less general than yours.  

It is at this point that the details of the logic become important. What does it mean 

for our modeling formalism if we base it on a logic for which this kind of automation 

cannot, in principle, exist?  That is, what happens if we can’t determine whether my 

notion of James Dean movie is the same as yours? If we view this sort of provable 

connection as essential to the nature of modeling, then we have failed. We simply cannot 

tolerate a logic in which this kind of question cannot be answered by automated means in 

some finite amount of time. 
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In the study of formal logic, this question is called decidability. A logical system is 

decidable just if there in fact does exist an algorithm (i.e., a computer program) that can 

answer all questions of this sort in a finite amount of time. If not, then the system is 

undecidable. It is not our intention in this book to go into any detail about the 

mathematical notion of decidability, but a few comments on its relevance for modeling 

are in order. 

The first thing to understand about decidability is also the most surprising – how 

easy it is for a formal system to be undecidable. Given the formal nature of logic, it might 

seem that with enough patience and engineering, that a program could be developed to 

correctly and completely process any formal logic. One of the most influential theorems 

that established the importance of the notion of decidability shows that even very simple 

logical systems (basically, any system that can do ordinary integer arithmetic) are 

undecidable. It is actually quite challenging to come up with a logical system that can 

represent anything useful that is also decidable.  

This bit of tightrope walking is the impetus behind the OWL-DL standard. OWL-DL 

is based on a particular formulation of Description Logic. This means that there is an 

algorithm that can take as input any model expressed in OWL-DL, and determine which 

classes are equivalent to other classes, which classes are subclasses of other classes, and 

which individuals are members of which classes. The most commonly used algorithm for 

this problem is called the Tableau Algorithm. It works basically by keeping track of all 

the possible relations between classes, ruling out those that are inconsistent with the 

logical statements made in the model. The Tableau Algorithm is guaranteed to find all 

entailments of a model in OWL-DL in a finite (but possibly quite long!)  time. 
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Furthermore, it is possible to determine automatically whether a model is in fact in OWL-

DL, so that a program can even signal when the guarantees cannot be met.  

Modeling in OWL-DL supports the intuition that a model must be clear, 

unambiguous, and machine-processable. The Tableau Algorithm provides the machinery 

by which a computer system can make determinations about equivalence of classes.  

15.1.2 Executable models 

Another important motivation for formal modeling in the semantic web is to form a 

complete, integrated picture by federating information from multiple sources. If one 

source provides information about the places where hotel chains have hotels, and another 

describes what hotels appear at a particular place, a formal model can tell us that we can 

merge these two sources together by treating them as inverses of one another. The model 

provides a recipe for adding new information to incomplete information, so that it can be 

federated with other sources.  

Seen from this point of view, a model is similar to a program.  It provides a concise 

description of how data can be transformed for use in other situations. What is the impact 

of decidability in such a situation? Standard programming languages like Fortran and 

Java are undecidable in this sense. The undecidability of these languages is often 

demonstration with reference to the Halting Problem; it is impossible in principle to write 

a FORTRAN program that can take another arbitrary FORTRAN program as input, along 

with input for that program, and determine whether that program will halt on that input.  

Even though these languages are undecidable, they have proven nevertheless to be useful 

engineering languages. How can we write programs in these languages, if we can’t 

automatically determine their correctness, or in some sense, even their meaning? The 
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answer to this question in these cases is a discipline called Software Engineering. Even 

though it is not possible in general to determine whether any program will terminate, it is 

usually possible to determine that some particular program will terminate, and indeed, 

with what answer. The craft of engineering good FORTRAN programs is to write 

programs that not only will terminate on all input, but will actually perform well on 

particularly interesting input.  

Seen from this point of view, decidability is not a primary concern.  Models are 

engineered in much the same way as programs are.  If a model behaves poorly in some 

situation, then an engineer debugs the model until it behaves well. Since we are not 

concerned with decidability, we don’t need the guarantee that any algorithm will find all 

possible inferences. This opens up the choice of processor for OWL to a much wider 

range of algorithms, including algorithms like Forgy’s RETE algorithm that have enjoyed 

considerable popularity as processors for rule-based languages. 

This executable style of modeling is the motivation behind the OWL-Full standard. 

The meaning of a modeling construct in OWL-Full is given in much the same way as the 

meaning of a construct in a programming language is given. Just as the meaning of a 

statement in a procedural programming language is given by the operation(s) that a 

machine will carry out when executing that statement, the meaning of an executable 

model is given by the operation(s) that a program (i.e., an inference engine) carries out 

when processing the model. Information federation is accomplished because the model 

describes how information can be transformed into a uniform structure. 
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15.1.3 OWL-Full vs. OWL-DL 

So far, we have described the motivation behind OWL-Full and OWL-DL without 

actually describing what the differences are in terms of the actual language.  

The first thing to note about OWL-DL and OWL-Full is that they use exactly the 

same constructs; every modeling construct you have learned in this book can be used 

both in OWL-Full and OWL-DL. The inferences that you can draw from them are also 

the same, with the understanding that in the case of OWL-Full it might not be possible 

for an automated system to draw all correct conclusions.  

The difference between the languages lies in the usage.  But describing these 

differences is also problematic, since the determination of the precise boundary between 

OWL-Full and OWL-DL is a popular topic for Description Logic researchers. Many of 

the restrictions that were originally defined for OWL-DL have since been proved to have 

been too harsh.  Inclusion of these usages has been shown not to damage the decidability 

of the model.  For this reason, it is more important to understand the decidability-based 

motivation of the distinction than any particular usage distinction.  Here we will outline 

the major kinds of restrictions on the modeling language that are enforced by OWL-DL. 

The details of these continue to change as research in description logic proceeds.  

Class/Individual separation. In OWL-DL, Classes and Individuals are completely 

separate. That is, a model cannot specify that some resource is both a class and a member 

of a class. Recalling an example from Error! Reference source not found.,  we defined 

a number of ranks as classes: 
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ship:Captain rdfs:subClassOf ship:Officer . 
ship:Commander rdfs:subClassOf ship:Officer . 
ship:LieutenantCommander rdfs:subClassOf ship:Officer . 
ship:Lieutenant rdfs:subClassOf ship:Officer . 
ship:Ensign rdfs:subClassOf ship:Officer . 

We can specify the rank of an individual using membership in one of these classes, 

e.g.,  

:Warwick rdf:type ship:Captain . 

By virtue of their use in rdfs:subClassOf triples, all of the entities mentioned here are 

classes. But in another context, we might want to express what we know about these 

ranks. For instance, there is an ordering to these ranks, by which Captain outranks 

Commander, which in turn outranks LieutenantCommander, etc. We could express this 

relationship in RDF using a series of triples: 

ship:Captain ship:outranks ship:Commander . 
ship:Commander ship:outranks ship:LieutenantCommander . 
ship:LieutenantCommander ship:outranks ship:Lieutenant 
. 
ship:Lieutenant ship:outranks ship:Ensign . 

We represent the usage of ship:outranks with domain and range specifications as 

well: 

ship:outranks rdfs:domain ship:Rank . 
ship:outranks rdfs:range ship:Rank . 

 

While this seems like a natural thing to do, it violates the separation of Class and 

Individual in OWL-DL. Each rank is both a class (with members who hold that rank). 

But the domain and range information of ship:outranks makes each rank a member of the 

class Rank, and hence they are individuals. In OWL-Full, there is no condition forbidding 

this usage.  
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Property/Individual separation. In a similar vein, a property cannot also be an 

individual. We’ll consider a hypothetical example of metadata management to illustrate 

this.  Suppose we use a property to represent ownership metadata about information 

artifacts. 

comp:creator rdfs:domain comp:Asset . 

That is, each company asset has a creator. In this scenario, when the property 

comp:creator was introduced, the idea was that company assets would include things like 

documents, web pages, books, etc., and that this information would be described using 

the property comp:creator.  

Suppose that someone then were to decide to take this step one further, and use 

comp:creator to describe parts of the model.  It would be tempting to use it to describe 

the creator of all the parts of the model, thus: 

ship:Captain comp:creator :Wenger . 
ship:outranks comp:creator :Polk . 

This says that Wenger is the creator of the class ship:Captain, and that Polk is the 

creator of the property ship:outranks. This information about the source of information 

could be very useful during model maintenance.  Who do I go to, to find out about the 

design decision in the Captain class?  Or the intended usage of the outranks property? 

This is a perfectly sensible usage of a property like comp:creator, but it violates the 

rules of composition in OWL-DL, since the domain information about comp:creator 

allows us to infer that ship:Captain and ship:outranks are members of the class Asset, 

and hence individuals. Early versions of SKOS (Error! Reference source not found.) 

had this error. SKOS used certain annotation properties to describe SKOS entities, 

thereby making all SKOS properties and classes become individuals. Not only was this 
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confusing for people evaluating the inferences from a SKOS model, it also prevented any 

model that includes SKOS from satisfying the conditions to be in OWL-DL. 

InverseFunctional on datatypes. In Error! Reference source not found., we 

learned that owl:InverseFunctionalProperty is an important construct for data federation. 

Whenever two individuals share a value for an InverseFunctionalProperty, we can infer 

that they are the same individual. Things like social security number, employee number, 

driver’s license number, serial number, etc. are commonly used in this way. In Error! 

Reference source not found. we saw that FOAF uses foaf:email in this way.  

Unfortunately, OWL-DL has a condition that outlaws exactly these uses. It stipulates 

that an InverseFunctionalProperty must not also be a DatatypeProperty, that is, it cannot 

refer to a string, date, number, etc. That is, exactly the things that make up social security 

numbers, email addresses, etc. are forbidden from InverseFunctionalProperties. This is a 

stringent restriction, and one that is quite often responsible for placing a model into 

OWL-Full instead of OWL-DL.  

15.1.4 OWL-Full together with OWL-DL 

The distinction between OWL-Full and OWL-DL is technical, having to do with 

advanced mathematical topics like decidability. Add to that the fact that the utility of a 

decidable language is also controversial, and the result is that many beginning modelers 

find the prospect of deciding between them to be quite daunting. How do I decide 

between OWL-DL and OWL-Full?  Do I have to decide now?  What are the 

ramifications of making the wrong decision? Do I have to understand advanced 

mathematics to make this decision? If this were the case, then there would be a serious 

barrier to entry for semantic modeling.  
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Fortunately, the data merging mechanism of RDF provides a means by which a 

modeler can follow good engineering practice and postpone this decision for as long as 

possible.  Since OWL-DL is a subset of OWL-Full, any model (or model fragment) built 

in OWL-DL will also be a valid OWL-Full model.  

In Error! Reference source not found., we saw how to use owl:imports to include 

one model into another. The interpretation of such an import is that the importing model 

includes all triples from both models. 

Just because one model imports another, doesn’t mean that both of them have to be 

in the same dialect of OWL.  In particular, an OWL-Full model can import an OWL-DL 

model. Let’s suppose that model:A is an OWL-Full model, and model:B is an OWL-DL 

model, and that A imports B thus: 

model:A owl:imports model:B . 

Since A imports B, all the triples from B can also be considered to be in A. But since 

OWL-DL is a subset of OWL-Full, no new constructs were added into the model by the 

import. The import does not change the status of A; it is still OWL-Full. 

On the other hand, B does not import anything, so no foreign triples are included in 

it. So B is still in OWL-DL.  

For purposes of merging with other models, advertising as a reusable ontology, or 

being able to make comprehensive decidable proofs, B has all the advantages of an 

OWL-DL model. For the purposes of data manipulation and treating the model as a 

program, A has all the information that B has.  

When starting a model from scratch, it isn’t necessary to decide whether to model in 

OWL-DL or OWL-Full. In any case, best practice suggests keeping the model in (at 
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least) two separate pieces, where one imports the other. The imported model can be kept 

in OWL-DL. If it is important to you or your audience that some aspect of your model be 

published in OWL-DL, then that aspect should be modeled in the imported ontology. 

Aspects that are of use to an OWL-Full application should be modeled in the importing 

ontology.  

This practice was used in FEARMO (Error! Reference source not found.); the 

published FEARMO models are in OWL-DL, but certain FEARMO applications make 

use of OWL-Full features. These models import the published OWL-DL FEARMO 

models, which contain all the reusable content. Any other party who wishes to include 

FEARMO into their model can import the OWL-DL version.  

15.1.5 OWL-Lite 

Along with OWL-Full and OWL-DL, the original OWL specification identified a 

subset of OWL-DL with the intention that it would be easier to implement, and speed 

adoption of OWL. As OWL implementations mature, the significance of OWL-Lite is 

fading. Many implementations have skipped over OWL-Lite entirely, and gone directly 

into support of OWL-Full or OWL-DL, or, more commonly, supporting a proprietary 

subset of OWL. The simplifications in OWL-Lite include: 

Limited Cardinality Restrictions. Cardinality restrictions are limited in OWL-Lite to 

the integers 0 and 1. But as we have seen in Error! Reference source not found., 

cardinality restrictions to 0 or 1 have natural and common interpretations.  Most 

cardinality restrictions in real models use 0 or 1 anyway.  

No oneOf constructs. OWL-Lite does not include owl:oneOf constructs. This is in 

line with a simplified model of cardinality.  
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No hasValue restrictions. OWL-Lite does not include owl:hasValue restrictions.  

15.2  Beyond OWL 

Throughout this book, we have seen examples of the usefulness of the constructs of 

OWL for information management and data integration on a web-wide scale. But we 

have not argued for their completeness – that is, are there any other modeling constructs 

that would be useful in a Semantic Web setting?. In fact, there are a number of useful 

modeling capabilities that go beyond the capabilities of OWL. The Semantic Web, like 

the Web itself, is an ever-developing system, with new components and capabilities being 

developed all the time. In this chapter, we explore some of the directions in which the 

Semantic Web is being developed, either within the OWL recommendation itself, or 

beyond it, typically in proposals for rule languages for the web. 

15.2.1 Metamodeling 

“Metamodeling” is the name commonly given to the practice of using a model to 

describe another model as an instance. One feature of metamodeling is that it must be 

possible to describe properties of classes in the model. But as we have seen above, 

describing classes typically violates the separation of class and individual that allows a 

model to be described in OWL-DL.  

There are a number of motivations for metamodeling. One such motivation is that a 

model needs to play more than one role in an application. In one role, a particular concept 

should be viewed as a class; in another role, as an instance. If we are modeling animals, 

we might say that BaldEagle is an endangered species, thereby referencing BaldEagle as 

an individual. But in another application, we could view BaldEagle as a class, whose 
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members are the particular eagles in the zoo. Examples of this sort abound; wine 

connoisseurs speak of individual wines in terms of vintage.  For them, the vintage is an 

individual. But for a wine merchant who is keeping stock of how many bottles the shop 

has sold, the bottles themselves are individual members of the class, which is indicated 

by the vintage.  

We have already seen a number of examples of this kind of metamodeling in this 

book. In Error! Reference source not found., we saw how a foaf:Group is an individual 

that corresponds to a class of all the members of the group. In Error! Reference source 

not found., we saw how the Class-Individual Mirror pattern allowed us to view a line of 

business either as an individual, or as a class of all the subfunctions that comprise it. In 

15, we saw how military ranks can be seen as both classes and individuals. 

Other reasons for metamodeling are to imitate capabilities of other modeling systems 

(like object-oriented modeling) in which the value for some property can be specified for 

all members of a class at once.  

Metamodeling itself is not an issue in OWL-Full, since there is no restriction against 

using the same resource as an individual and as a class.  The formal issues really arise 

only when trying to achieve the results of metamodeling in OWL-DL. But even though 

there is no formal issue with overloading a single resource to refer to a class and an 

individual, we recommend as a best practice to keep these things separate, even in OWL-

Full. There really is a difference between a species and the set of animals of that species; 

there is a difference between Shakespeare’s family and the set of people in it. These 

distinctions could be important to someone who wants to reuse a model. Keeping them 

distinct in the first place will enhance the model’s utility. 
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Fortunately, there are a number of possible approaches to doing metamodeling in 

OWL (either OWL-DL or OWL-Full). For most situations, we recommend the 

Relationship Transfer pattern from Error! Reference source not found., or the Class-

Individual Mirror pattern from Error! Reference source not found..  

Recent Description Logic research has determined that in certain cases, the 

Class/Individual separation constraint can be relaxed without any danger to the 

decidability of the logic. Thus it is possible to have a new version of OWL-DL in which 

metamodeling of the sort we have described here can be done as easily in OWL-DL as in 

OWL-Full.  Whether such a proposal reaches fruition in the OWL standard or not, we 

still recommend using one of the patterns in this book whenever possible, instead of 

resorting to overloading resource usage.  

15.2.2 Multipart Properties 

In RDFS, we have seen how properties can relate to one another using 

rdfs:subPropertyOf. This establishes a hierarchy of properties; any relations that hold 

lower in the hierarchy also hold higher in the hierarchy. There are other ways in which 

properties can relate to one another. A common example is the notion of uncle – A is the 

uncle of B just if A is the brother of someone who is the parent of B. This is called a 

“multipart property” – that is, the property uncle is made up of two parts (in order): 

parent and brother.  

When multipart predicates are used with other RDFS and OWL constructs, they 

provide some powerful modeling facilities. For instance, we can model the constraint “a 

child should have the same species as its parent” by stating that the multipart predicate 
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made up of hasParent followed by hasSpecies  (which we denote as hasParent + 

hasSpecies) is rdfs:subPropertyOf hasSpecies. Let’s watch how this work.  

Suppose we have the following triples 

Elsie hasParent Lulu . 
Lulu hasSpecies Cow . 

Now we can infer  

Elsie hasParent+hasSpecies Cow . 

But since the multipart predicate hasParent+hasSpecies is a rdfs:subPropertyOf 

hasSpecies, we can infer  

Elsie hasSpecies Cow . 

There are some proposals for how to represent multipart properties in OWL, in such 

a way that they do not endanger the decidability of OWL-DL. 

15.2.3 Qualified Cardinality 

Cardinality restrictions in OWL allow us to say how many distinct values a property 

can have for any given subject. Other restrictions tell us about the classes that those 

values can or must be members of.  But these restrictions work independently of one 

another; we cannot say how many values from a particular class a particular subject can 

have. A simple example of qualified cardinality is a model of a hand. A hand has five 

fingers, one of which is a thumb.  

Qualified cardinalities may seem like a needless modeling detail, and in fact, a large 

number of models get by quite fine without them. But models that want to take advantage 

of detailed cardinality information often find themselves in need of such detailed 

modeling. This happens especially when modeling the structure of complex objects.  
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For example, when modeling an automobile, it might be useful to say that a properly 

equipped automobile includes five tires, four of which must be regular road-worthy tires, 

and a fifth that is a designated spare tire, that might not have all the properties of a 

regular tire. Structural models of this sort often make extensive use of qualified 

cardinalities.  

There is a proposal for defining qualified cardinalities that will allow them to work 

within the decidability constraints of OWL-DL.  

15.2.4 Multiple Inverse Functional Properties 

Inverse Functional Properties can be used to determine the identity of individuals 

based upon the values of the properties that describe them. If two people share the same 

social security number, then we can infer that they are actually the same person. This 

kind of unique identifier is indispensable when merging information from multiple 

sources.  

Unfortunately, anyone who has done a lot of such integration knows that this kind of 

merging only scrapes the surface of what needs to be done.  Far more common is the 

situation in which some combination of properties together implies the identity of two or 

more individuals. For instance, two people residing at the same residence with the same 

first and last names should be considered to be the same person. Two people born in the 

same hospital at the same time of day should be considered to be the same people. 

Examples of this kind of multiple identifiers are much easier to come by than single 

identifies, as required by inverse functional properties.  

To further complicate matters, in real information federation situations, it is often the 

case that even these combinations of properties cannot guarantee the identity of the 
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individuals. Two people at the same address with the same name are very likely to be the 

same person (but not certain; a father could live with his son of the same name). OWL 

has no facility to deal with uncertainty, so there is no way to express this sort of 

information. Extending OWL to deal with uncertainty is a topic of current research and 

standardization efforts in the Semantic Web.  

A few proposals have been made for how to deal with multiple inverse functional 

properties in OWL. The problems include syntactic ones (how to express a relation 

including an arbitrary number of properties) as well as logical ones (what are the logical 

properties of the resulting system?). It is even possible to achieve multiple inverse 

functional property definitions while staying within the inferencing bounds of OWL-Full. 

The solution is far too convoluted for clear and understandable semantic models.  

15.2.5 Rules 

OWL is the most inclusive inferencing system currently defined for the Semantic 

Web, but it isn’t likely to be the last. Many of the limitations in OWL can be addressed, 

for the purposes of data management, using Rules.  

Rule-based systems have a venerable tradition starting in the days of Expert Systems, 

and are in common use in business logic applications to this day. A number of useful 

algorithms for processing data with rules have been known for many years, and many of 

them have been streamlined.  

Many of the issues with OWL presented in this chapter can be addressed with rules. 

Multipart properties (like the definition of uncle) are easily expressed in rules. Multiple 

inverse functional properties can be expressed in rules as well.  There are even a number 

of approaches to uncertainty in rules. While none of them has emerged as the final word 
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in rule-based uncertainty, many of them have considerable research and practical 

examples behind them, making uncertainty in rules a relatively well-understood issue.  

Given all these virtues of rules and rule-based systems, why don’t they play a bigger 

role in modeling on the Semantic Web than they do? In fact, one could even ask why 

there is a need for a modeling language like OWL, when there exists a mature, well-

understood rules technology. One could even ask this question in greater generality. Why 

aren’t more software systems in general written in rules?  

We cannot treat this issue in full detail in this book, but we can outline the answer, as 

it relates to OWL and the Semantic Web. One of the lessons learned from the history of 

rule-based systems is that software engineering in such systems is more difficult than it is 

in modular, procedural languages. While it is unclear whether this is an essential feature 

of rule-based systems or not, it is undeniable that rule-based programmers have not 

achieved the levels of productivity of their more conventional counterparts. This has 

particular ramifications in the Semantic Web; one defense for using OWL-Full vs. OWL-

DL was that software engineering discipline makes the notion of decidability basically 

irrelevant for model design. In the case of rule-based systems, software engineering 

cannot provide this same support. But rule-based systems are just as undecidable as 

general-purpose languages like FORTRAN and Java.  

Is there a way to get the best of both worlds? In section 15.1.4, we saw how we could 

combine OWL-DL and OWL-Full models, and in some sense get the advantages of both 

modeling languages. Can this be done with rules as well? These, and other similar 

questions, are the current focus of research and development into Semantic Web rules 

languages.   
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15.3 Chapter Summary 

OWL should be considered as a living language, growing in the context of the ways 

it is being used on the web and in commerce. As shortcomings in the language are 

identified, the system grows to accommodate. Sometimes that growth takes the form of 

additional constructs in the language (e.g., multipart properties), sometimes as 

connections to other systems (rules), but sometimes progress in a language comes from 

specifying limitations to the language (as is the case for OWL-DL and OWL-Full). All of 

these processes are moving in parallel for the Semantic Web.  

15.4 Fundamental Concepts 

OWL-Full – unrestricted dialect of OWL, with all constructs used in any 

combination. 

OWL-DL – dialect of OWL restricted to ensure decidability – all constructs allowed, 

but certain restrictions on their use.  

OWL-Lite – subset of OWL-DL designed to encourage early adoption. Significance 

wanes as implementations reach OWL-DL and OWL-Full levels.  

Metamodeling – models that describe models, usually requires that classes be treated 

as individuals.  

Multipart properties – daisy-chain composition of properties.  

Multiple Inverse Functional Properties – uniquely identify an individual based 

upon matching values for several properties.  

Qualified Cardinality – cardinality restriction whereby the class of the value being 

counted is specified as well as the number of distinct values.  
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