Declarative Computation Model

Kernel language semantics
(Non-)Suspendable statements (VRH 2.4.3-2.4.4)

Carlos Varela
RPI
October 11, 2007

Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 1

Sequential declarative computation
model

* The kernel language semantics

— The environment: maps textual variable names (variable
identifiers) into entities in the store

— Abstract machine consists of an execution stack of semantic
statements transforming the store

— Interpretation (execution) of the kernel language elements
(statements) by the use of an abstract machine
« Non-suspendable statements

« Suspendable statements

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2

Kernel language syntax

The following defines the syntax of a statement, (s) denotes a statement

Computations (abstract machine)

* A computation defines how the execution state is
transformed step by step from the initial state to the final

(s)y u= skip empty statement state
[(0= variable-variable binding * A single assignment store O is a set of store variables, a
I = variable-value binding variable may be unbound, bound to a partial value, or
| (s (sp) sequential composition .
| local (x) in ¢s;) end declaration bound to a group of other variables
| if(x) then (s,) else (s,) end conditional * An environment E is mapping from variable identifiers to
[0 -)} procedural application variables or values in 0, e.g. {X = x,, Y = x,}
| case (x) of (pattern) then (s,) else (s,) end pattern matching A i stat ‘i .
* A semantic statement is a pair
vy u= proc {${y,) ... (o) }{(sppend] ... value expression (<S> , E) where <S> is a statement
+ ST is a stack of semantic statements
(pattern) = ..
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 3 C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 4
Computations (abstract machine) Semantics

* A computation defines how the execution state is
transformed step by step from the initial state to the final
state

* The execution state is a pair

(8T,0)
— where ST is a stack of semantic statements and O is a single
assignment store

* A computation is a sequence of execution states
(8Ty,00) = (ST, ,0,) = (8T,,0,) = ...

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 5

+ To execute a program (i.e., a statement) (s) the initial
execution state is

([¢s),2)],9)
* ST has a single semantic statement ((s) , &)
+ The environment E is empty, and the store o is empty
e [...]denotes the stack

+ At each step the first element of S7'is popped and
execution proceeds according to the form of the element

 The final execution state (if any) is a state in which S7 is
empty

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 6

skip

» The semantic statement is
(skip, E)
+ Continue to next execution step

(skip, E) | , .
ST ST

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Sequential composition

* The semantic statement is

(s} (s2) > B)
+ Push ((s,), E) and then push ((s,) , £) on ST
+ Continue to next execution step

o
(s, E) o
(s (20, E) | 4 (), E)| +
ST ST
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 8

Variable declaration

» The semantic statement is
(local (x) in {s) end, E)
* Create a new store variable x in the Store

+ Let E'be E+{(x) = x}, i.e. E’ is the same as E but the
identifier (x) is mapped to x.

+ Push ((s),E’)on ST
+ Continue to next execution step

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Variable declaration

» The semantic statement is
(local X in {s) end, E)

o
o
o+

(local X in (s) end ,) . ((s) »)

ST ST + X; | unbound

E
X =x;
C. Varela; Adapted wi/permission from S. Haridi and P. Van Roy 10

Variable-variable equality
* The semantic statement is

()=0)E)
* Bind E({x)) and E((y)) in the store

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Variable-value equality

» The semantic statement is
()=, E)
* Where (v) is a record, a number, or a procedure

+ Construct the value in the store and refer to it by the
variable y.

* Bind E({x)) and y in the store

* We have seen how to construct records and numbers, but
what is a procedure value?

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 12

Procedure values

+ Constructing a procedure value in the store is not simple
because a procedure may have external references

local P Q in
Q =proc {$} {Browse hello} end
P =proc {$} {Q} end
local Q in
Q =proc {$} {Browse hi} end
{P}
end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 13

Procedure values (2)

TN

local P Qin proc {$} {Q} end Q—ux,
Q = proc {8} {Browse hello} end
P =proc {$} {Q} end

local Q in
Q =proc {$} {Browse hi} end
{P}

end

proc {$} {Browse hello} end Browse — x,,

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 14

Procedure values (3)

« The semantic statement is
roc {$
(=100 5 () (1) 5) end,) (proc () -)}
* () ... (v, are the (formal) parameters of the ()
procedure end,

+ Other free identifiers in (s) are called external CE)
references (z,) ... (z,)
« These are defined by the environment £ where
the procedure is declared (lexical scoping)
« The contextual environment of the procedure
CESE). ¢
+ When the procedure is called CE is used to
construct the environment for execution of (s)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 15

Procedure values (4)

* Procedure values are pairs:

(Proc {8 (1) - (vl (syend , CE) (proc {$ () ... (v, }

* They are stored in the store just as (s)
any other value end
>
CE)
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 16

Procedure introduction

+ The semantic statement is
() =proc {8 () ... (v} (s) end, E)
+ Create a contextual environment:
CE=E |{(::) ¢y Where (z)) ... (z,) are external references in (s).
+ Create a new procedure value of the form:
(proc {$ (y) ... (v} {s) end, CE) , refer to it by the variable x,
* Bind the store variable E({x)) to x,
+ Continue to next execution step

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 17

Suspendable statements

* The remaining statements require (X) to be bound in order to
execute

» The activation condition (E((X)) is determined), is that (x) be
bound to a number, a record or a procedure value

(s) =
|

if (x) then (s,) else (s,) end conditional
| {0y - Y } procedural application
| case (x)of pattern matching
(pattern) then (s,)

else (s,) end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 18

Life cycle of a thread

ST not empty

A & B/ Execute Y

A

A & not B/
Suspend,

not A /Terminate
Top(ST) activation
condition is true

Terminated H_/

B

Suspended

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 19

Conditional

* The semantic statement is
(if (x) then (s,) else (s,) end , E)
+ If the activation condition (E({x)) is determined) is true:
— If E({x)) is not Boolean (true, false), raise an error
— E((x)) is true, push ((s,) , E) on the stack
— E((x)) is false, push ({(s,) , £) on the stack
« If the activation condition (E({x}) is determined) is false:

— Suspend

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 20

Procedure application

» The semantic statement is

@G G}, B

+ If the activation condition (E({x)) is determined) is true:

— If E({x)) is not a procedure value, or it is a procedure
with arity that is not equal to n, raise an error

— If E({(x)) is (proc {$ (z,) ... (z,)} (s) end, CE),
pus!
((8), CE + {(z,) = E((») - {zo) = E(uD)})

on the stack
+ If the activation condition (E({x}) is determined) is false:
— Suspend

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 21

Case statement

+ The semantic statement is
(case (x) of (1) ({f1) = (k) -) + (o)
then (s;)
else (s,yend, E)
« If the activation condition (E({x)) is determined) is true:
— If E({x)) is a record, and the label of E({x)) is (/) and its arity
is[(f)) ...]:
push (local {x;) = (x). (f}) ... (x,) = (x). {f,) in (s;) end, E)
on the stack
— Otherwise, push ((s,), E) on the stack
+ If the activation condition (E({x)) is determined) is false:

— Suspend

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2

Execution examples

local Max C in
proc {Max XY Z}
s (s); if X >=Y then Z=X else Z=Y end
(sh (>2{ end

{Max 3 5C}
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 23

Execution examples (2)

local Max C in

end
s), {Max 3 5C}
end

+ Initial state ([((s);,)], D)
* After local Max Cin ...
([(s)y tMax—m, C = c})], {m, c})
+ After Max binding
([(s)y tMax —m, C = c})],
{m=(proc{$ X Y Z} (s);end, &), c})

proc {Max XY Z}
(), <0s) { (s); ifX>=Y then Z=X else Z=Y end
1 2
(

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2

Execution examples (3)

local Max C in
proc {Max XY Z}
(s); if X>=Y then Z=X else Z=Y end
end

(s), {Max 35C}

end

(s)1 < (s)e

+ After Max binding
([(s)y tMax —m, C = c})],
{m = (proc{$ X Y Z} (s)send, &), c})
* After procedure call
([(s)y X—=1,Y=>1,Z—c})],
{m = (proc{$ X Y Z} (s);end, &) , 1,=3, ,=5, ¢})

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

25

Execution examples (4)

local Max C in
proc {Max XY Z}
(s); if X>=Y then Z=X else Z=Y end
end

(s), {Max 35C}

end

(s)1 < (s)e

After procedure call
([(s)ss X—=1,,Y =1, Z—=c})],
{m=(proc{$ X Y Z} (s),end , @), ,=3, ,=5, ¢})
After T = (X>=Y)
([(s)yy X=1,Y=1,Z—>c,T—1))],
{m = (proc{$ X Y Z} (s),end , @) , ,=3, 1,=5, ¢, t=false})
([(Z=Y, X—=t,Y—=1,,Z—=c, T—1})],
{m = (proc{$ X Y Z} (s),end , @), ,=3, 1,=5, ¢, t=false})

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 26

Execution examples (5)

local Max C in
proc {Max XY Z}
(s); if X>=Y then Z=X else Z=Y end
end

(s), {Max 35 C}

end

(s)1 < (s)e

s ([(Z=Y, X—=t,Y—=1,,Z—c, T—1t})],

{m = (proc{$ X Y Z} (s);end , @) , t,=3, 1,=5, ¢, t=false})

+ (L],

{m = (proc{$ X Y Z} (s)send , &) , 1,=3, 1,=5, ¢=5, t=false})

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

27

50.

S1.
52.

Exercises

Does dynamic binding require keeping an environment in a closure
(procedure value)? Why or why not?
VRH Exercise 2.9.2 (page 107)
*After translating the following function to the kernel language:
fun {AddList L1 L2}
case L1 of H1|T1 then
case L2 of H2|T2 then
H1+H2|{AddList T1 T2}
end
else nil end
end
Use the operational semantics to execute the call
{AddList [1 2] [3 4]}

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 28

