CSCI-1200 Computer Science II — Fall 2006
Lab 11 — Stacks and Queues

Stacks and queues are very simple sequence containers in which items are only added and removed from the
end. In a stack, all work is done on just one end, called the top. Hence, when an item is removed, it will be
the item most recently added. As a result, a stack is called a LIFO structure, for “Last In First Out”. In a
queue, items are added to the end, usually called the rear or back, and removed from the other end, usually
called the front. Hence, when an item is removed it will be the item that has been in the queue longer
than any other item currently in the queue. As a result, a queue is called a FIFO structure, for “First In
First Out”. A fundamental property distinguishing stacks and queues from other containers is that items
in the middle of the sequence may not be accessed or removed. One effect of this is than neither
stacks nor queues have iterators.

A simple example will help illustrate further the use of a stack. The goal is to determine whether or not an
expression has a balanced set of parentheses. Here the term parentheses is meant to include the characters
'C00 % 0) 1, 7. We use a stack of chars. Each time an “open” parenthesis char — (7, ’[’, {’ — is read

))
9 ?

in the input, the char is pushed onto the stack. Every time a “close” parenthesis — ’)’, ’]’, '}’ — is read in
the input, the top char of the stacked is checked:

o If the stack is empty, the parentheses are unbalanced, so an error has occurred.

e If the top char is the matching “open” parenthesis char — e.g. ’(’ on top of the stack when)’ is read,
etc. — there is a correct match of parentheses. In this case, the top char is popped off the stack, and
both it and the input char are discarded (no longer considered).

e If the top char is not the matching “open” parenthesis — e.g. a ’(’ is on top of the stack when a '}’ is
read — then a error has been detected.

This process of reading chars and doing the outlined push / comparison / pop operations continues until an
error is found or until there is no more input associated with the expression. If the stack is not empty at
the end of the input, there aren’t enough closing parentheses.

Stacks and queues are implemented in the standard library (#include <stack> and #include <queue>) as
templated containers (e.g., std: :stack<int> s; and std::queue<char> q;). Summaries of the stack and
queue operations from http://www.sgi.com/ are included for your reference. Interestingly, these classes are
implemented in terms of other standard library containers rather than being implemented “from scratch”.
We’ll explore this issue in the checkpoints below.

Download these two files from the course web site and then turn off your network connections.

http://www.cs.rpi.edu/academics/courses/fall06/cs2/labs/11_stacks_queues/cs2stack.h
http://www.cs.rpi.edu/academics/courses/fall06/cs2/labs/11_stacks_queues/cs2queue.h

Checkpoints

1. Write a program that uses the standard library stack class as described above to see if the parentheses,
curly braces, square brackets, and angle brackets are balanced. Make up some simple test cases to be
sure your program works correctly. Also test your program on various C++ files you have created this
semester. Do programs that compile without error always have balanced pairs of these characters?
Why or why not?

2. The file cs2stack.h contains a partial implementation of stack in terms of vector. Complete this
implementation and write a short main program to test it. Be sure to test all member functions. You
should keep the implementation entirely inside cs2stack.h and you are welcome to inline functions.
Carefully study the preconditions and output an error message is they are not met.

Operations on a std: :stack

| Member || Description

value type The type of object stored in the stack. This is the same as r and
Sequence: :value_ type.

|size_type ||An unsigned integral type. This is the same as Ssequence: :size_type.

bool empty() const

Returns true If the stack contains no elements, and false otherwise. s.empty() 18
equivalent to s.size() == 0.

size type size()
const

Returns the number of elements contained in the stack.

value type& topi()

Returns a mutable reference to the element at the top of the stack. Precondition: empty ()
IS false.

const value_ typeé&
top() const

Returns a const reference to the element at the top of the stack. Precondition: empty () is
false.

void push(const
value type& x)

Inserts x at the top of the stack. Postconditions: size() will be incremented by 1. and
top() will be equal to =.

void pop() Removes the element at the top of the stack. [3] Precondition: empty () is false.
Postcondition: size() will be decremented by 1.

bool Compares two stacks for equality. Two stacks are equal if they contain the same number

"Egrit"r“f cz““ of elements and if they are equal element-by-element. This is a global function, not a

sl member function.

stacks)

bool operator<(const|Lexicographical ordering of two stacks. This is a global function, not a member function.

stack&, const

stacks)

