
CSCI–4150 Introduction to Artificial Intelligence, Fall 2004
Assignment 7 addendum

A. Problems

Here are the problems for this assignment with the correction to the procedure names for problems 2 and 3,
a bit more explanation for some problems, and details for problem 5.

1. (15 points) Write the procedures: calc-initial-state and calc-new-state that transform the
game state into a reinforcement learning state; terminal-state? that indicates whether a rein-
forcement learning state is a terminal state; and init-tables that initializes the tables for transition
probabilities, rewards, and utility values.

The details for these procedures appear in the original Assignment 7 handout.

2. (15 points) Write the procedure (basic-rl-strategy fs-num actions) that takes a nonnega-
tive integer fs-num and a list actions that are permissible. It should return the action that maxi-
mizes expected utility. Essentially, your procedure should implement the following equation:

a = argmaxai∈A ∑
s′

T(s, ai , s′)U(s′)

Note: your basic-rl-strategy procedure should be able to work with any valid solution for
Problem 1.

3. (15 points) Write the procedure (create-exploring-rl-strategy R+ Ne) . It should return a
strategy procedure that incorporates the simple exploration function described in our text (page 774)
where Ne and R+ are parameters in the exploration function. This procedure can do some initializa-
tion, for example to initialize nonterminal utilities to random values, to zero, or to R+.

Note that Equation 21.5 in the text computes optimistic values in terms of optimistic utility values.
However, this equation (as the text notes) is given as an example to use with value iteration, not
temporal differencing. You can implement your optimistic utility calculation using the real utility
values on the right hand side, even though this is not correct (as explained on page 774). Because of the
relatively short action sequences for this problem domain, it should work OK for large enough values
of Ne. You might also try initializing all nonterminal utility values to R+ in addition to implementing
this exploration function.

Note: the returned strategy procedure should be able to work with any valid solution for Problem 1.

4. (15 points) Write the procedure (create-td-learning alpha) that returns a procedure of the
form (td-learning fs-num action ts-num) . This td-learning procedure will be called for
each state transition and should update the utilities according to the temporal differencing update
equation:

U(s)← U(s) +α(R(s) + U(s′)−U(s))

Note that this is equation 21.3 from our text, but I have omitted the discount factor γ and changed the
notation from Uπ (s) to U(s) since we do not have a fixed policy π here.

Note: the returned learning procedure should be able to work with any valid solution for Problem 1.

5. (75 points) For this problem, you will use your code to learn a blackjack player and evaluate its
performance. You will write up (and turn in) the results.

(a) Describe how your calc-X-state procedures (this means the calc-initial-state and
calc-new-state procedures) turn the game state into a reinforcement learning state. I am
interested, not in the details of how you do the calculation, but in how the reinforcement learning



states you use correspond to game states. Make sure you say how many states you used, and
which are terminal states.

Give a brief explanation why you transformed the game state to a reinforcement learning state
this way.

(b) Play blackjack using your implementation of the procedures from Problem 1 to “learn” transition
probabilities and average rewards for your states. One way to do this is to run the random player
on a large number of hands. (I would say at least 10,000 hands, but if you have many states, you
will need to play more hands.) You should verify that your transition probabilities and average
rewards have converged by checking that the values do not change (or do not change much)
with additional hands.

Save the resulting tables and upload them to the web tester for this problem.

In your writeup, briefly describe how you learned these transition probabilities and average
rewards (e.g., which player, how many hands played, and how you verified that your values
had converged). Examine the state transition probabilities for a few states. Are they correct?
Assume that you are equally likely to receive any card.

(c) Load your tables from the previous part and use a temporal differencing learning player (i.e.,
a strategy procedure created by your create-exploring-rl-strategy procedure, and a
learning procedure created by your create-td-learning procedure) to learn utilities for non-
terminal states as the agent explores the state space.

You will have to pick values for the parameters required by the create-exploring-rl-
strategy and create-td-learning procedures. You should turn off table updates for this
part. Also note that the initial utility values will be whatever your original call to init-tables
set them to be, unless you do some initialization in your create-exploring-rl-strategy
procedure.

You should repeatedly play “rounds” of some number of hands and check to see whether the
utility values have stopped changing (actually, whether the maximum change is less than some
small amount). You should write a little code to do this: a procedure that creates a list of utilities
(using the get-utility-element procedure), one that compares two lists of utilities to find
the amount of the maximum change, and one that repeatedly plays “rounds.” The last procedure
should terminate when the utility value change is small enough or until some maximum number
of rounds have been played. You may even want to let the alpha value decrease as more rounds
are played.

Save the resulting tables. Add any code that you wrote for this part to this file and upload it to
the web-tester for this problem.

In your writeup, describe what you did to learn the utility values for nonterminal states. Make
sure you say what parameter values you chose (i.e., R+, Ne, and alpha ), and how many hands
were played in each round. Briefly explain your choice of parameters. Also, how many rounds
did it take for your utility values to converge?

(d) Load the tables from the previous part and test how well the following player performs.

(define (rl-player)
(list "Alice" basic-rl-strategy non-learning-procedure))

Play 10,000 hands, and report the net winnings and total bets. Calculate the winnings as a per-
centage of total bets.

Implement another strategy of your choice. You can easily find blackjack strategies online, but

2



you will probably have to modify them because you we aren’t allowing splitting. Play 10,000
hands and report the results as above.

Describe the strategy you implemented, and include your code in your writeup. Chances are that
your reinforcement learning player did not do as well as your manually programmed strategy.
Why is this, and how would you learn a better (or optimal) strategy for your states?

B. Support code documentation

B.1 Players and strategies

A player is a list of three things, in order:

1. A (double-quoted) string containing the name of the player. You can use any name except "dealer" .

2. A strategy procedure of the form (lambda (fs-num actions) ...) where fs-num is a reinforce-
ment learning state (a nonnegative integer) returned by one of your calc-X-state procedures, and
actions is a list of actions that your player may take at that point in the game.

3. A learning procedure of the form (lambda (fs a ts) ...) . This procedure will be called on when
there is a state transition from state fs after taking action ato state ts .

To get started, you can use the random player (defined in the a7example.scm file):

(define (random-strategy state-num actions)
(list-ref actions (random (length actions))))

(define (non-learning-procedure fs a ts)
’())

(define (random-player)
(list "Bob" random-strategy non-learning-procedure))

I strongly suggest that you define players as procedures so that the most recent version of your strategy
and learning procedures is used.

B.2 Playing blackjack

There are two procedures for playing blackjack with your player:

(play-hand player)
(play-match N player)

The first plays a single hand; the second plays N hands. The initial bet on each hand is 1.0. If the player
doubles down, then the bet is increased to 2.0. The play-match procedure returns a list of two numbers:
the first is your player’s net winnings, and the second is the total amount your player bet. Note that for a
fixed number of hands, the amount bet will vary if your player doubles down.

Note that you must have initialized the tables (see Section C of the original Assignment 7 handout)
and have defined the calc-X-state procedures (Problem 1) in order to play blackjack — even if your
player does not use them (as is the case for the random player). Again, you can use the procedures in
a7example.scm to get started.

The operation of play-hand and play-match can be controlled by the following variables:

3



• print-narration — when #t (its default value) a narration of the play is printed to the screen.
You can disable printing parts of this information with the following variables (all of whose default
value is #t ):

– print-player-play

– print-dealer-play

– print-bet-settlement

When print-narration is set to #f , no narration is printed to the screen, with one exception,
controlled by the following variable:

– print-match-progress — when set to, for example, 10 (its default value), a message will be
printed every 10 hands. If you don’t want this message to be printed, you can set it to #f .

• print-learning — when #t (its default value), a message will be printed before each call to your
learning procedure.

• enable-table-updates — when #t (its default value), the support code records all state transi-
tions and rewards in order to build up data for estimating state transition probabilities and average
rewards. Disabling table updates will preserve the current transition probabilities and average re-
wards.

While testing, you may find that you want to run your code on the same sequence of cards/hands. In order
to do this, I have provided procedures that let you manipulate the state of the random number generator.

• (save-random-state — makes and saves a copy of the random number generator state

• (restore-random-state — restores the random number generator state to that from the last call
to save-random-state . The sequence of random numbers (and therefore sequence of cards) will
be the same as following the last call to save-random-state .

You will notice that if the dealer or the player has blackjack, there is no update to the tables, nor is the
player’s learning function called. This is because there is no state transition in these situations.

B.3 Tables

The main procedures for creating, accessing, and printing the tables of transition probabilities, rewards,
and states were described in the original Assignment 7 handout. What follows are additional features (and
a few clarifications) of the support code.

• As noted in the original handout, a call to create-tables will discard the old tables. However, you
should know that loading a7code.com will also discard the old tables.

• There is a procedure print-rl that takes zero arguments and prints all the tables by calling print-
transitions , print-rewards , and print-utilities .

• There are several variables that control how the tables are printed to the screen:

– print-line-width — default value is 80

– transition-decimal-places — default value is 3

– utility-decimal-places — default value is 3

– reward-decimal-places — default value is 3

• Make sure your code works for any number of states. You can get the number of states by calling the
procedure (num-states) .

4



• The support code counts the number of “action transitions,” i.e., the number of times a given action
is tried from each state. If you ran the random player lots of times to learn the transition probabilities
and rewards, all its actions are recorded in this manner. However, when you first start a tempo-
ral differencing program, you want it to start exploring the states without any knowledge of what
happened previously. This is necessary for your exploration function to work. To reset the action
transition counts, call the procedure:

– (reset-action-transitions) — all action transition counts (as returned by the procedure
get-action-transitions ) will be zeroed by a call to this procedure.

• To save your tables, you can call the procedure:

– (save-tables fname) — given a double-quoted string argument, it will print definitions of
the transition, utility, and rewards tables to a file of that name.

B.4 Blackjack hands

There are several procedures for evaluating cards blackjack hands that you can use:

• (bj-value h) — returns the value of a hand

• (soft-hand? h) — returns #t if there is an ace is the hand that is counted as 11.

• (blackjack? h) — returns #t if h is a two card hand with value 21.

5


