
Peer to Peer Computing

Partially based on Nelson Minar’s article at 
http://www.openp2p.com/pub/a/p2p/2002/

01/08/p2p_topologies_pt2.html



What is Peer-to-Peer?

• A model of communication where every 
node in the network acts alike.

• As opposed to the Client-Server model, 
where one node provides services and other 
nodes use the services. 



Advantages of P2P Computing

• No central point of failure
– E.g., the Internet and the Web do not have a central 

point of failure.
– Most internet and web services use the client-server 

model (e.g. HTTP), so a specific service does have a 
central point of failure.

• Scalability
– Since every peer is alike, it is possible to add more 

peers to the system and scale to larger networks.



Disadvantages of P2P Computing

• Decentralized coordination
– How to keep global state consistent?
– Need for distributed coherency protocols.

• All nodes are not created equal.
– Computing power, bandwidth have an impact 

on overall performance.
• Programmability

– As a corollary of decentralized coordination.



P2P Computing Applications

• File sharing

• Process sharing

• Collaborative environments



P2P File Sharing Applications

• Improves data availability
• Replication to compensate for failures.
• E.g., Napster, Gnutella, Freenet, KaZaA

(FastTrack), your DFS project.



P2P Process Sharing 
Applications

• For large-scale computations
• Data analysis, data mining, scientific 

computing
• E.g., SETI@Home, Folding@Home, 

distributed.net, World-Wide Computer



P2P Collaborative Applications

• For remote real-time human collaboration.
• Instant messaging, virtual meetings, shared 

whiteboards, teleconferencing, tele-
presence.

• E.g., talk, IRC, ICQ, AOL Messenger, 
Yahoo! Messenger, Jabber, MS Netmeeting, 
NCSA Habanero, Games



P2P Technical Challenges

• Peer identification 
• Routing protocols
• Network topologies
• Peer discovery
• Communication/coordination protocols
• Quality of service
• Security
• Fine-grained resource management



P2P Topologies

• Centralized
• Ring
• Hierarchical
• Decentralized
• Hybrid



Centralized Topology



Ring Topology



Hierarchical Topology



Decentralized Topology



Hybrid Topology
Centralized + Ring



Hybrid Topology
Centralized + Decentralized



Evaluating topologies

• Manageability
– How hard is it to keep working?

• Information coherence
– How authoritative is info? (Auditing, non-repudiation) 

• Extensibility
– How easy is it to grow?

• Fault tolerance
– How well can it handle failures?



Evaluating topologies

• Resistance to legal or political 
intervention
– How hard is it to shut down? (Can be good or bad)

• Security
– How hard is it to subvert?

• Scalability
– How big can it grow?



Centralized

Manageable
Coherent

Extensible
Fault Tolerant

Secure
Lawsuit-proof

Scalable

ü System is all in one place
ü All information is in one place
X No one can add on to system
X Single point of failure
ü Simply secure one host
X Easy to shut down
? One machine. But in practice?



Ring

Manageable
Coherent

Extensible
Fault Tolerant

Secure
Lawsuit-proof

Scalable

ü Simple rules for relationships
ü Easy logic for state
X Only ring owner can add
ü Fail-over to next host
ü As long as ring has one owner
X Shut down owner
ü Just add more hosts



Hierarchical

Manageable
Coherent

Extensible
Fault Tolerant

Secure
Lawsuit-proof

Scalable

½ Chain of authority
½ Cache consistency
½ Add more leaves, rebalance
½ Root is vulnerable
X Too easy to spoof links
X Just shut down the root
ü Hugely scalable – DNS



Decentralized

Manageable
Coherent

Extensible
Fault Tolerant

Secure
Lawsuit-proof

Scalable

X Very difficult, many owners
X Difficult, unreliable peers
ü Anyone can join in!
ü Redundancy
X Difficult, open research
ü No one to sue
? Theory – yes : Practice – no



Centralized + Ring

Manageable
Coherent

Extensible
Fault Tolerant

Secure
Lawsuit-proof

Scalable

ü Just manage the ring
ü As coherent as ring
X No more than ring
ü Ring is a huge win
ü As secure as ring
X Still single place to shut down
ü Ring is a huge win

Common architecture for web applications



Centralized + Decentralized

Manageable
Coherent

Extensible
Fault Tolerant

Secure
Lawsuit-proof

Scalable

X Same as decentralized
½ Better than decentralized
ü Anyone can still join!
ü Plenty of redundancy
X Same as decentralized
ü Still no one to sue
? Looking very hopeful

Best architecture for P2P networks?



Napster

• The P2P revolution is started.
• Central indexing and searching service
• File downloading in a peer-to-peer point-to-

point manner.



Gnutella

• Peer-to-peer indexing and searching service.
• Peer-to-peer point-to-point file downloading 

using HTTP.
• A gnutella node needs a server (or a set of 

servers) to “start-up”… gnutellahosts.com 
provides a service with reliable initial 
connection points

But introduces a new single point of failure!But introduces a new single point of failure!



The Gnutella protocol (v0.4)

• PING – Notify a peer of your existence
• PONG – Reply to a PING request 
• QUERY – Find a file in the network
• RESPONSE – Give the location of a file
• PUSHREQUEST – Request a server behind 

a firewall to push a file out to a client.



Freenet

• Peer-to-peer indexing and searching service.
• Peer-to-peer file downloading.
• Files served use the same route as searches 

(not point-to-point)
– Provides for anonymity.



KaZaA/Morpheus

• Hybrid indexing/searching model 
– Not centralized like Napster, not decentralized like 

Gnutella.
• Peer-to-peer file downloading using HTTP.

– “SmartStream” for incomplete file downloads.
– “FastStream” for partial file downloads.

• “SuperNodes” elected dynamically if sufficient 
bandwidth and processing power – hybrid 
topology model.

• A central server keeps user registrations, logs 
usage, and helps bootstrapping peer discovery.


