Random Bits of Perl

None of this stuff isworthy of it's own
lecture, but it’s all abunch of things
you should learn to use Perl well

eval

* Evaluate Perl code
$code = “print (‘Hello World\n)";
eval $code; #prints Hello Wrld

* trap errors
— using block notation, if there are any run-time errors,
eval returns undef and sets error in $@
« either block notation { ...} or expression notation
“..." isalowed
— block syntax checked at compile time, so faster.
Expression checked at run-time.
— If no errors, executes code as though you had actually
typed the code in your Perl script.
« poth forms set errors in $@.

Back-ticks

 Third kind of quoted string

 Executes an external program and returns the output

@iles = "1s *. htnl *;

e Your script will run“l's *. ht nl ” from the
command prompt, and store the output of that
program in @files

» Back-ticks do interpolation just like double quotes

Note that thisis not the same asthesyst em

function

— syst emreturns return value of the called program, not
the output

Quoting operators
* You may get strings that end up looking messy
because of all the quotes:

$s = “He said \“She said \“They
said \“This is bad.\"\"\"";

« can use the quoting operator qg// to ‘ choose your
own quotes .
— Much like choosing your own delimitersin pattern
matching
$s = “He said qg/ She sai d qq(They
said qq[This is bad])/”

— You could argue this doesn’t look much better
* You could beright.

Many quoting operators
« |n each case below, you can use any non-alpha-numeric
character for the delimiter, just as you can with m// and g///
¢ ¢// - single quoted string
¢ qg// - double quoted string
— doesinterpolation
o gx// —back-ticked string
« gw// - quote words
— gw/Mon Tue Wed/ = (“Mon”, “Tue’, “Wed")
¢ gr/l - quoteregular expression
— evaluate string as though it's a RegExp
— Then useresult in an actual pattern match
— mostly for efficiency — don’t worry about this one too much

map
¢ map expression list

— evaluate expression (or ablock) for each value of list. Sets$_
to each value of list, much like aforeach loop

— Returns alist of all results of the expression

@words = map {split * ' } @ines;

— Set$_tofirst member of @lines, runsplit * ' (splitacts
on $_if no arg provided), push resultsinto @words, set $_to
next member of @lines, repeat.

@inmes = gqw norning afternoon evening night/;

@reetings = map “Good $_\n", @ines;
@greetings = (“Good morning”, “ Good afternoon”,
Good evening”, “ Good night™)

grep

 Similar to map (but not exact)
* returnsalist of all members of the original list for

which evaluation wastrue.

— (map returns list of all return values of each evaluation)
» Typically used to pick out lines you want to keep
@ode = grep !/™Ms*#/, @ll _lines;

— removes all lines beginning with comments

— Assigns $_ to each member of @all_lines, then
evaluates the pattern match. If pattern match istrue, the
$_isadded to @code

do

yeah, yeah, this should have been included with
the looping constructs. My bad.

Similar to C/C++ do/while construct.

Execute entire block following do once. If block
followed by awhi | e modifier, check the
conditional, and then redo the loop.

Major Difference: in Perl, do isnot alooping
structure. Therefore, cannot use next , | ast , or
r edo.

