
1

Random Bits of Perl

None of this stuff is worthy of it’s own
lecture, but it’s all a bunch of things

you should learn to use Perl well

• Evaluate Perl code
$code = “print (‘Hello World\n’)”;

eval $code; #prints Hello World

• trap errors
– using block notation, if there are any run-time errors,

eval returns undef and sets error in $@
• either block notation {…} or expression notation

“…” is allowed
– block syntax checked at compile time, so faster.

Expression checked at run-time.
– If no errors, executes code as though you had actually

typed the code in your Perl script.
• both forms set errors in $@.

eval

Back-ticks
• Third kind of quoted string
• Executes an external program and returns the output
@files = `ls *.html`;

• Your script will run “ls *.html” from the
command prompt, and store the output of that
program in @files

• Back-ticks do interpolation just like double quotes
• Note that this is not the same as the system

function
– system returns return value of the called program, not

the output

Quoting operators
• You may get strings that end up looking messy

because of all the quotes:
$s = “He said \“She said \“They
said \“This is bad.\”\”\””;

• can use the quoting operator qq// to ‘choose your
own quotes’.
– Much like choosing your own delimiters in pattern

matching
$s = “He said qq/She said qq(They
said qq[This is bad])/”

– You could argue this doesn’t look much better
• You could be right.

Many quoting operators
• In each case below, you can use any non-alpha-numeric

character for the delimiter, just as you can with m// and s///
• q// - single quoted string
• qq// - double quoted string

– does interpolation
• qx// – back-ticked string
• qw// - quote words

– qw/Mon Tue Wed/ ! (“Mon”, “Tue”, “Wed”)

• qr// - quote regular expression
– evaluate string as though it’s a RegExp
– Then use result in an actual pattern match
– mostly for efficiency – don’t worry about this one too much

map
• map expression list

– evaluate expression (or a block) for each value of list. Sets $_
to each value of list, much like a foreach loop

– Returns a list of all results of the expression
@words = map {split ‘ ’ } @lines;

– Set $_ to first member of @lines, run split ‘ ’ (split acts
on $_ if no arg provided), push results into @words, set $_ to
next member of @lines, repeat.

@times = qw/morning afternoon evening night/;

@greetings = map “Good $_\n”, @times;

@greetings ! (“Good morning”, “Good afternoon”,
Good evening”, “Good night”)

2

grep
• Similar to map (but not exact)
• returns a list of all members of the original list for

which evaluation was true.
– (map returns list of all return values of each evaluation)

• Typically used to pick out lines you want to keep
@code = grep !/^\s*#/, @all_lines;

– removes all lines beginning with comments
– Assigns $_ to each member of @all_lines, then

evaluates the pattern match. If pattern match is true, the
$_ is added to @code

do
• yeah, yeah, this should have been included with

the looping constructs. My bad.
• Similar to C/C++ do/while construct.
• Execute entire block following do once. If block

followed by a while modifier, check the
conditional, and then redo the loop.

• Major Difference: in Perl, do is not a looping
structure. Therefore, cannot use next, last, or
redo.

