Objected Oriented Perl

An introduction — because | don’t
have the time or patience for anin-
depth OOP lecture series...

Before we can begin...

» Let'stalk about references

» We've used them afew times before
— 2D arrays, parameters to subroutines

« Never made anything formal

* Now we will, because without them, Perl
objects can’t exist

References

e A referenceisapointer toa‘red’ variable.
» We've seen how to create references to
existing variables:
— $array_ref =\@array;
— $hash_ref =\%hash;
— $scalar_ref =\$scalar
 Can also create Anonymous references. ..

Anonymous References

» These are pointers to values stored in memory
that aren’t yet (or ever) labeled by avariable
name.

» Syntax issimilar (but different) to creating
actual variable

o Array:

—$array_ref =[1, 2, 3,4, 5);

e Hash:

— $hash_ref = {Name => ‘Paul’, ID => 123};
 Scalar:

— $str_ref =\"A String\n”;

— $int_ref =\456;

Dereferencing References

« We've seen before how to dereference entire

arrays or hashes (and scalars):
— @array = @$array_ref;

— %hash = %$hash_ref;

— $scalar = $$scalar_ref;

» Depending on your point of view,
dereferencing members of array- or hash-
referencesis either easier or more
complicated...

TMTOWTDI

¢ Infact, there are three..
% $a_ref [2]
e ${$a_ref} [2]
e S$a_ref->[2]

“ "bl | 0";
“Hel | 0”;
“Hel | 0”;

*+$ $h ref {$key} $val ue;

e ${$h_ref} {$key} $val ue;

* S$h_ref->{$key} = $val ue;

¢ These are al valid and acceptable. Form you
choose is whatever looks the best to you.

Okay, Let's Get Started

» Thiswill be anintroduction only. We will
cover the very basics. Anything more
complicated goes beyond the scope of this
course

— Infact, even thisintroduction is treading pretty
close to the edge of that scope.

Classes in Perl
A classis defined by storing code which defines
it in a separate file, and then useing that file

The file must be named with the name of the
class (starting with an capital letter), followed by
the extension. pm

After the shebang in your ‘main’ file, thisline of
code;

use <Cl assnane>;

Y ou can then create instances of the class
anywhere in your file.

Defining an Object

« In Perl, an object is simply areference
containing the members of aclass.
—typically, areference to a hash, but can be any
kind of reference
» The reference becomes an object whenitis
“blessed” —when you tell Perl the reference
belongs to a certain class.

Simple Example

package Student;
$obj = {Name => ‘' Paul’,
I D => 123};
bl ess ($obj, Student);
* $obj is now an object of the class Student

 ‘package Student’ isthefirst line of your
pmfile. It identifiesal following code as
belonging to this class/package/module

Constructors

» Unlike C++, a Constructor in Perl is simply another
subroutine. Typically named ‘new’, but you can giveit
any name you want.

package Student;

sub new {
ny $ref = {Nane => “", ID => 0};
bl ess ($ref, Student);
return $ref;

}

* Inthis example, don't actually haveto give $ref any
elements. You can definethem all in alater
subroutine, if you choose.

Calling the Constructor

« Asyou may be able to guess, TMTOWTDI

« $student = new Student;

e $student = Student->new;

e $student = Student::new(Student);
* First two methods get trand ated to 3" method

internally by perl. This has beneficial
conseguences. ..

Arguments to Constructor
 (actually, this applies to arguments to any method)

« Every time the constructor is called, first argument to
function isthe name of the class.

« Remaining arguments are caller-defined

* $obj = new Student (“Paul”, 123);
« $obj = Student->new(“Paul”, 123);
e $obj = Student::new(Student, “Paul”, 123);

« So, when defining constructor, often seethis:
sub new{
ny $class = shift;
ny ($name, $ID) = @;
ny $ref = {Nane => $nane, | D => $I D};
bl ess ($ref, $class);
return $ref;

More Methods

Within the .pm file, any subroutines you declare become
methods of that class.

« For al methods, first argument is always the object method
isbeing called on. Thisisaso beneficial...
sub set Nang{
ny $ref = shift;
ny $nane = shift;
$ref ->{Nane} = $nane;

¢ Tocall this method:

¢ $obj - >set Nane(“Paul Lalli”);

* Perl trandates this to:

e Student::set Nane($obj, “Paul Lalli”);

One more thing...

« In one of the oddest things I’ ve learned
about Perl, you need to place the following
statement at the end of your .pm file:

. l,

e Thisisbecause the ‘use’ keyword needs to
take something that returns atrue value.
Perl ‘returns’ the last statement eval uated.

£ BeKind... to One Another) 7

Note that class variables are not strictly ‘private’ in the C++
sense.

There is nothing preventing the user of your class from
modifying the data members directly, bypassing your
interface functions.

Perl’s general philosophy is*“1f someone wants to shoot
himself in the foot, who are you to stop him?’
When using other peopl€’s classes, almost always a better
idea to use the functions they’ ve given you, and pretend you
can't get at theinternal data.
There are, of course, methods you can use to prevent users
from doing this.

— Significantly beyond scope of this course

— Redlly not worth the trouble

