
1

Objected Oriented Perl

An introduction – because I don’t
have the time or patience for an in-

depth OOP lecture series…

Before we can begin…

• Let’s talk about references
• We’ve used them a few times before

– 2D arrays, parameters to subroutines
• Never made anything formal
• Now we will, because without them, Perl

objects can’t exist

References

• A reference is a pointer to a ‘real’ variable.
• We’ve seen how to create references to

existing variables:
– $array_ref = \@array;
– $hash_ref = \%hash;
– $scalar_ref = \$scalar

• Can also create Anonymous references…

2

Anonymous References
• These are pointers to values stored in memory

that aren’t yet (or ever) labeled by a variable
name.

• Syntax is similar (but different) to creating
actual variable

• Array:
– $array_ref = [1, 2, 3, 4, 5];

• Hash:
– $hash_ref = {Name => ‘Paul’, ID => 123};

• Scalar:
– $str_ref = \“A String\n”;
– $int_ref = \456;

Dereferencing References

• We’ve seen before how to dereference entire
arrays or hashes (and scalars):
– @array = @$array_ref;
– %hash = %$hash_ref;
– $scalar = $$scalar_ref;

• Depending on your point of view,
dereferencing members of array- or hash-
references is either easier or more
complicated…

TMTOWTDI
• In fact, there are three…
• $ $a_ref [2] = “Hello”;

• ${$a_ref} [2] = “Hello”;

• $a_ref->[2] = “Hello”;

• $ $h_ref {$key} = $value;

• ${$h_ref} {$key} = $value;

• $h_ref->{$key} = $value;

• These are all valid and acceptable. Form you
choose is whatever looks the best to you.

3

Okay, Let’s Get Started

• This will be an introduction only. We will
cover the very basics. Anything more
complicated goes beyond the scope of this
course
– In fact, even this introduction is treading pretty

close to the edge of that scope.

Classes in Perl
• A class is defined by storing code which defines

it in a separate file, and then useing that file
• The file must be named with the name of the

class (starting with an capital letter), followed by
the extension .pm

• After the shebang in your ‘main’ file, this line of
code:

• use <Classname>;

• You can then create instances of the class
anywhere in your file.

Defining an Object

• In Perl, an object is simply a reference
containing the members of a class.
– typically, a reference to a hash, but can be any

kind of reference
• The reference becomes an object when it is

“blessed” – when you tell Perl the reference
belongs to a certain class.

4

Simple Example

package Student;

$obj = {Name => ‘Paul’,

ID => 123};

bless ($obj, Student);

• $obj is now an object of the class Student
• ‘package Student’ is the first line of your

.pm file. It identifies all following code as
belonging to this class/package/module

Constructors
• Unlike C++, a Constructor in Perl is simply another

subroutine. Typically named ‘new’, but you can give it
any name you want.

package Student;

sub new {

my $ref = {Name => “”, ID => 0};

bless ($ref, Student);

return $ref;

}

• In this example, don’t actually have to give $ref any
elements. You can define them all in a later
subroutine, if you choose.

Calling the Constructor
• As you may be able to guess, TMTOWTDI
• $student = new Student;

• $student = Student->new;

• $student = Student::new(Student);

• First two methods get translated to 3rd method
internally by perl. This has beneficial
consequences…

5

Arguments to Constructor
• (actually, this applies to arguments to any method)
• Every time the constructor is called, first argument to

function is the name of the class.
• Remaining arguments are caller-defined
• $obj = new Student (“Paul”, 123);
• $obj = Student->new(“Paul”, 123);

• $obj = Student::new(Student, “Paul”, 123);

• So, when defining constructor, often see this:
sub new{
my $class = shift;
my ($name, $ID) = @_;

my $ref = {Name => $name,ID => $ID};
bless ($ref, $class);
return $ref;

}

More Methods
• Within the .pm file, any subroutines you declare become

methods of that class.
• For all methods, first argument is always the object method

is being called on. This is also beneficial…
sub setName{
my $ref = shift;
my $name = shift;

$ref->{Name} = $name;
}

• To call this method:
• $obj->setName(“Paul Lalli”);

• Perl translates this to:
• Student::setName($obj, “Paul Lalli”);

One more thing…

• In one of the oddest things I’ve learned
about Perl, you need to place the following
statement at the end of your .pm file:

• 1;

• This is because the ‘use’ keyword needs to
take something that returns a true value.
Perl ‘returns’ the last statement evaluated.

6

+* Be Kind… to One Another*+
• Note that class variables are not strictly ‘private’ in the C++

sense.
• There is nothing preventing the user of your class from

modifying the data members directly, bypassing your
interface functions.

• Perl’s general philosophy is “If someone wants to shoot
himself in the foot, who are you to stop him?”

• When using other people’s classes, almost always a better
idea to use the functions they’ve given you, and pretend you
can’t get at the internal data.

• There are, of course, methods you can use to prevent users
from doing this.
– Significantly beyond scope of this course
– Really not worth the trouble

