L ook(ahead|behind) Assertions

L ook(ahead|behind)

Four operations let you “peek” into other
parts of the pattern match without actually
trying to match.

Positive lookahead: (?=PATTERN)
Negative lookahead: (??PATTERN)
Positive lookbehind: (?<=PATTERN)
Negative lookbehind: (?<!PATTERN)

Positive lookahead

We want to remove duplicate words from a
string:

— “Have you seen this this movie?’

Could try:

—s/(\w+)\s\1/$1/q;

— Thiswon’t work for everything. Why not?

— Hint: “what about thisthis this string?’

L ookaheads to the rescue

The problem is that the regular expression is
“eating up” too much of the string.

We instead just want to check if aduplicate
word exists, but not actually match it.

Instead of checking for a pair of duplicate words
and replacing with first instance, delete any
word if it's going to be followed by a duplicate
s/ (\w+) \'s (?=\1)//gx;

“Search for any word (and save it) followed by
a space, then *check to see* if it'sfollowed by
the same word, and replace the word and space
with nothing”

Negative Lookahead
(?PATTERN)
Same concept. Thistime, * check to see* if
PATTERN does NOT come next in the string.
s/(\w+) \'s (?=\1)//gx;
— this cancels “the team that won won't play.”
We want to insure that the duplicate word isn't
followed by an apostrophe.
s/ (\wt) \'s (?2=\1 (?! "\w))//gx;
“Search for any word (and save it), followed by a
space, then check to seeif it'sfollowed by the

same word, NOT followed by an apostrophe and a
word character”

L ookbehind
Positive: (?<=PATTERN)
Negative: (?<!PATTERN)
Same concept as look-ahead. Thistime, ensure
that PATTERN did or did not occur * before*
current position.
ex: s/ (?<!c)eilielg;
— Search string for all “ei” not preceded by a‘c’ and
replace with “i¢”
—“i before e except after ¢”
NOTE: only ‘fixed-length’ assertions can be used
for look-behind (ie, c* doesn’'t work)

