
1

Look(ahead|behind) Assertions

Look(ahead|behind)

• Four operations let you “peek” into other
parts of the pattern match without actually
trying to match.

• Positive lookahead: (?=PATTERN)
• Negative lookahead: (?!PATTERN)
• Positive lookbehind: (?<=PATTERN)
• Negative lookbehind: (?<!PATTERN)

Positive lookahead

• We want to remove duplicate words from a
string:
– “Have you seen this this movie?”

• Could try:
– s/(\w+)\s\1/$1/g;

– This won’t work for everything. Why not?
– Hint: “what about this this this string?”

2

Lookaheads to the rescue
• The problem is that the regular expression is

“eating up” too much of the string.
• We instead just want to check if a duplicate

word exists, but not actually match it.
• Instead of checking for a pair of duplicate words

and replacing with first instance, delete any
word if it’s going to be followed by a duplicate

• s/(\w+) \s (?= \1)//gx;

• “Search for any word (and save it) followed by
a space, then *check to see* if it’s followed by
the same word, and replace the word and space
with nothing”

Negative Lookahead
• (?!PATTERN)
• Same concept. This time, *check to see* if

PATTERN does NOT come next in the string.
• s/(\w+) \s (?= \1)//gx;

– this cancels “the team that won won’t play.”
• We want to insure that the duplicate word isn’t

followed by an apostrophe.
• s/(\w+) \s (?= \1 (?! ’\w))//gx;

• “Search for any word (and save it), followed by a
space, then check to see if it’s followed by the
same word, NOT followed by an apostrophe and a
word character”

Lookbehind
• Positive: (?<=PATTERN)
• Negative: (?<!PATTERN)
• Same concept as look-ahead. This time, ensure

that PATTERN did or did not occur *before*
current position.

• ex: s/(?<!c)ei/ie/g;
– Search string for all “ei” not preceded by a ‘c’ and

replace with “ie”
– “i before e except after c”

• NOTE: only ‘fixed-length’ assertions can be used
for look-behind (ie, c* doesn’t work)

