
1

Operators

Operators

• Perl has MANY operators.
– Covered in Chapter 3 of Prog.Perl

• Most operators have numeric and string
version
– remember Perl will convert variable type for

you.
• Go through them in decreasing precedence

Increment/Decrement
• ++ and --. Postfix and Prefix work as in C.
• ++ is “magical”.

– if value is purely numeric, works as expected
– if string value, or ever used as string, magic happens
– ‘99’++ ! ‘100’
– ‘a9’++ ! ‘b0’
– ‘Az’++ ! ‘Ba’
– ‘zz’++ ! ‘aaa’

• Try it, see what happens.

2

Exponentiation

• ** " Exponentiation. Calls C’s pow()
function
– works on floating points
– 2**3 == pow(2, 3) == “2 to the power of 3” == 8
– NOTE: higher precedence than negation

• -2**4 ! -(2**4) ! -16

Unary Operators

• ! – logical negation
– 0, “0”, “”, undef ! all false
– anything else ! true

• - – arithmetic negation (if numeric)
– if non-numeric, ‘negates’ the string
– ex: $foo = “-abc”; $bar = -$foo;
– $bar gets value “+abc”;

• ~ – bitwise negation

Multiplicative

• / -- Division. Done in floating point.
• % -- Modulus. Same as in C.
• * -- Numeric multiplication
• x -- String multiplication (aka repetition).

– 123 * 3 ! 369
– 123 x 3 ! ‘123123123’ (scalar context)
– (123) x 3 ! (123, 123, 123) (list context)

3

Additive

• + – normal addition
• - – normal subtraction
• . – string concatenation

– $var1 = “hello”; $var2 = “world”;

– $var3 = $var1 . $var2;
• $var3 contains “helloworld”

– $var3 = “$var1 $var2”;
• $var3 contains “hello world”

Shift operators

• << and >> - work as in C.
• 1 << 4 ! 16
• 32 >> 4 ! 2

Relational Operators

Less Than or Equalle<=

Less Thanlt<

Greater Than or Equalge>=

Greater Thangt>

MeaningStringNumeric

4

Equality Operators

comparisoncmp<=>

not equal tone!=

Equal toeq==

MeaningStringNumeric

•<=>

• -1 if left < right

• 0 if left == right

•1 if left > right

Bitwise Operators

• & -- AND. | -- OR ^ -- XOR
– & has higher precedence

• if either value numeric:
– convert to integer,
– bitwise comparison on integers

• if both values strings:
– bitwise comparison on corresponding bits from

the two strings

“C-Style” Logical Operators

• && - AND || - OR
– && has higher precedence

• operate in short-circuit evaluation
– ie, evaluate only what’s needed
– creates this common Perl line:

• open (FILE, “file.txt”) ||
die “Can’t open file.txt”;

• return last value evaluated, not 0 or 1.

5

Conditional Operator

• ?: -- Trinary operator in C.
• like an if-else statement, but it’s an

expression
– $a = $ok ? $b : $c;

– if $ok is true, $a = $b. if $ok is false, $a = $c

Assignment operators

• =, **=, *=, /=, %=, x=, +=, -=, .=,
• &=, |=, ^=, <<=, >>=, &&=, ||=
• In all cases, all assignments of form
• TARGET OP= EXPR

• evaluate as:
• TARGET = TARGET OP EXPR

Comma Operator
• Scalar context:

– evaluate each list element, left to right. Throw
away all but last value.

– $a = (fctn(), fctn2(), fctn3());
• fctn() and fctn2() called, $a gets value of fctn3()

• Array context:
– list separator, as in array assignment
– @a = fctn(), fctn2(), fctn3());

• @a gets return values of all three functions

6

Logical and, or, not, xor

• Functionally equivalent to &&, ||, !
• BUT, a lower precedence.
• $xyz = $x || $y || $z;

• $xyz = $x or $y or $z;

• What’s the difference?

Incomplete list

• ALL operators found in Chapter 3 of PP.
• some skipped over, we’ll talk about them

later. (arrow, file test, range)

