
1

File/Directory manipulation

Opening a File

• To read from a file, must use a file handle.
– by convention, all caps

• open a file (for reading):
– open FILE, “myfile.txt”;

• open file for writing:
– open OUTFILE, “>output.txt”;

• open file for appending:
– open APPFILE, “>>append.txt”;

Reading from a file

• open FILE, “myfile.txt”;
• $one_line = <FILE>;
• @all_lines = <FILE>;

– @all_lines get all remaining lines from
myfile.txt

– puts each line of file into one member of array
• remember chomp!

2

printing to a file

• open OUTFILE, “>output.txt”;

• print OUTFILE, “Hello World!\n”;

• this can be tedious if all outputs are to same
output file.

• select OUTFILE;

– make OUTFILE the default file handle for all print
statements.

Close your files!

• open FILE, “myfile.txt”;

• @all_lines = <FILE>;

• close FILE;

• opening another file to the same filehandle
will implicitly close the first one.
– don’t rely on this. It’s not Good Programming

Practice. ™

File Test Operators

• Test to see if something is true about a file
• full list on page 98 of Prog. Perl.
if (-e “myfile.txt”){

print “file exists, now opening\n”;

open FILE, myfile.txt;

}

• can operate on filename or already existing
filehandle

3

Directory manipulation

• directories can be opened, read, created,
deleted, much like files.

• take care when doing these operations:
you’re affecting your directory structure

• many of the functions’ success will depend
on what permissions you have on the
specified directories.

open, read, close

opendir DIR “public_html”;

$nextfile = readdir DIR;

@remaining_files = readdir DIR;

closedir DIR;

Rewind

opendir DIR “.”;

$firstfile = readdir DIR;

$secondfile = readdir DIR;

rewinddir DIR;

@allfiles = readdir DIR;

4

Change, Create, and Delete

• chdir ! change working directory.
• mkdir ! create directory (like unix call)
• rmdir ! remove directory (like unix call)

– works if and only if directory is empty
chdir “public_html”;

mkdir “images”

rmdir “temp”;

