
Top 10 keybindings in Emacs/Edwin for MIT Scheme

These are keybindings specific to using MIT Scheme. I STRONGLY recommend that you spend
some time learning how to use the emacs editor itself, i.e. learn the basic keybindings for
moving the cursor around, switching buffers, killing and yanking text, etc. The time you spend
will be more than repaid in your productivity.

1. TABproperly indents your scheme code

Type a line of code. Hit return. Hit TAB. Type the next line of code. Repeat.

OR, put the cursor an any point on a line of improperly indented code. Hit TAB, and the
line will be indented the proper amount (relative to the lines above it, so start at the top
if you need to do multiple lines, or use C-M-q ).

2. C-x C-e sends the expression to the left of the cursor. This works both in the Scheme
interaction buffer as well as in scheme-mode buffers where you are editing your code.

This command looks left from the cursor until it has a complete expression and then
sends that to the Scheme interpreter.

3. M-z sends the current expression to the Scheme interpreter. This works both in the
Scheme interaction buffer as well as in scheme-mode buffers where you are editing your
code.

This command looks for an open parenthesis in the leftmost column and sends all the
text from there up to the cursor position, and then to the right of the cursor until all
parentheses are balanced.

4. C-c C-s when done in a scheme-mode buffer, will switch to the Scheme interaction
buffer.

5. M-p and M-n in the Scheme interaction buffer will scroll through the history of expres-
sions that you have sent to the Scheme interpreter. (This doesn’t work if you are using
version 7.3. You can use C-c C-y to yank the previous command.)

6. C-c C-c sends an interrupt to the Scheme interpreter.

7. M-o from a scheme-mode buffer, will send the entire buffer to the Scheme interpreter.

8. C-M-f and C-M-b move the cursor over the previous and next (respectively) parenthesis
balanced list. (C-M-p and C-M-n perform the same functions.)

9. C-M-a and C-M-e move the cursor to the beginning and end of a definition, respectively.

Your code should be indented properly for these to have the desired effect.

10. C-M-q properly indents an entire definition.

The cursor should be on the opening parenthesis of the define for this to work properly.


