Branch and bound search & alpha cutoff

a-f pruning explained

e Branch and bound is a class of (search) techniques
from operations research
e Basic ideas: (assume optimal = minimum cost)
— solution space is partitioned
—lower bound established for each partition

— partitions with bound > cost of known solution
are excluded from further consideration

e A heuristic search example:

— Depth limited search with an admissible
monotonic heuristic

~let f(-) = 9(-) + h()

— The alpha cutoff is the value of the best node at
depth limit

— Abort search along a path when f(-) > «

?— 8
— A
f— 12

—~€«— cut off search

depth limit

a-B-MINIMAX details

N
=11 —

e AB:MAX-PLAYER returns:

—normal exit: current « value (considers children
of current node)
— cutoff exit: 3 value from parent (MIN) node

e On cutoff exit, returning the same « or 3 value from
the parent does not cause an update.

e On normal exit, return value may be a or § value
passed to current node:

a=-¢5
B= o MAX
MIN
evaluated subtree >
(value = 5) MAX

e A move leading to returned value does not
necessarily exist in a subtree!

e First depth 1 child found with increased a does have

an optimal game leading to that value.

3

® o-3-MINIMAX is like “branch and bound” search
with an « cutoff except that there are two players.

e A “cutoff” value is maintained for each player.
e When AB:MAX-PLAYER or AB:MIN-PLAYER is called:
- a is the highest value resulting from one of MAX’s
other moves at some ancestor node
— [3 is the lowest value resulting from one of MIN’s
other moves at some ancestor node
—a < (3, otherwise MAX or MIN (whichever has the
first opportunity) would take the better move at a
node higher in the game tree.

o If the cutoff condition (o >) occurs,

— For a MIN node, we found a move that leads to a
low score, but MAX would choose the (earlier)
move that leads to « instead!

— For a MIN node, we found a move that leads to a
high score, but MAX would choose the (earlier)
move that leads to [instead!

Finding all optimal moves

e Finding all optimal moves requires more search:

>8
MAX

10
8 <8 MIN

TR

10 8 8 ?

e “Regular” a-3-MINIMAX search would stop
searching middle move because left move
guarantees a value of 8.

e Value of “?” node determines if middle move is
same as left; it must be examined to find all optimal
moves.

a-3-MINIMAX search for all optimal moves

AB:MINIMAX(n)

1.let [v, e, L] = AB:MAX-PLAYER(n, —00, 00)

2. let M = moves leading from n to each node ¢; € £
3. return [v, M|

AB:MAX-PLAYER(n, ., 3)
1. if game over or depth limit reached,
return [eval(n), nor nal , (]
2.leta/ = —00, L.=10
3. for each child ¢; of n
e [v;, €;, L;] < AB:MIN-PLAYER(c;, max(c, o),)
eif ¢; = nor mal then:
—ifv; > o then o/ + v;, L+ {¢;}
—ifv; =0/ then L + L u{c}
e if o' > 3, return [0, cut of f, (]
4. return [/, nor nal , £]

Running time of a-3-MINIMAX

a-3-MINIMAX search for all optimal moves

AB:MIN-PLAYER(n, a, [3)
1. if game over or depth limit reached,
return [eval(n), nor nal , (]
2. letf' =00, L=10
3. for each child ¢; of n
e [v;, e;, L;] < AB:MAX-PLAYER(c;, o, min(3, 3')
eif ¢; = nor mal then:
—ifv; < f then '« v;, L+ {¢;}
—ifv; = ' then L «+ L v {¢;}
eif o > [, return [0, cut of f, (]
4. return [, nor mal , L]

Notes:
e separates value of best move(s) at ancestor (« and /)
and value of best move(s) at current node (o’ or ')
e keeps set of optimal child nodes £

® AB:MAX-PLAYER and AB:MIN-PLAYER return:
[value, exit-type, best-children |

e same as regular AB:MINIMAX if cutoff condition is
o > B ora> B for AB.MAX-PLAYER and
AB:MIN-PLAYER respectively

6

EXPECTIMAX

e Number of nodes searched depends on the order the
children are evaluated!

e o-(pruning reduces the number of nodes searched,
thereby reducing the effective branching factor.

e The minimum number of leaf nodes evaluated
(i.e. for perfect ordering) is:

N opdl2 1 for even d
4= pd+1)/2 4 pd-1/2 _ 1 for odd d

e This makes the effective branching factor
approximately /b instead of b.

o (Pearl 1982) shows that average search depth is

increased by approximately 4/3, corresponding to
an average branching factor of %/

e For games with a chance element, e.g. with dice.

e View search tree as the “dice move” alternating with
MAX and MIN.

e When the “dice move,” an expected value is
computed.

