
Branch and bound search & alpha cutoff

� Branch and bound is a class of (search) techniques
from operations research� Basic ideas: (assume optimal = minimum cost)

– solution space is partitioned
– lower bound established for each partition
– partitions with bound � cost of known solution

are excluded from further consideration� A heuristic search example:

– Depth limited search with an admissible
monotonic heuristic

– let
������	��
 �� ������ �� ��	�

– The alpha cutoff is the value of the best node at
depth limit

– Abort search along a path when
������� ���

depth limit

f= 5^

f= 12^f= 8^

f= 11^
f= 10^

f= 9^
f= 8^f= 6^

cut off search

α

1

� - � pruning explained

� � - � -MINIMAX is like “branch and bound” search
with an � cutoff except that there are two players.� A “cutoff” value is maintained for each player.� When AB:MAX-PLAYER or AB:MIN-PLAYER is called:

– � is the highest value resulting from one of MAX’s
other moves at some ancestor node

– � is the lowest value resulting from one of MIN’s
other moves at some ancestor node

– ��� � , otherwise MAX or MIN (whichever has the
first opportunity) would take the better move at a
node higher in the game tree.� If the cutoff condition (��� �) occurs,

– For a MIN node, we found a move that leads to a
low score, but MAX would choose the (earlier)
move that leads to � instead!

– For a MIN node, we found a move that leads to a
high score, but MAX would choose the (earlier)
move that leads to � instead!

2

� - � -MINIMAX details

� AB:MAX-PLAYER returns:

– normal exit: current � value (considers children
of current node)

– cutoff exit: � value from parent (MIN) node� On cutoff exit, returning the same � or � value from
the parent does not cause an update.� On normal exit, return value may be � or � value
passed to current node:

MAX

MAX

MIN
α = 5
β =

3 2

8

α = 5
β = 8

5evaluated subtree
(value = 5)

α = − 5
β = 8

8

� A move leading to returned value does not
necessarily exist in a subtree!� First depth 1 child found with increased � does have
an optimal game leading to that value.

3

Finding all optimal moves

� Finding all optimal moves requires more search:

10 8 8 ?

> 8

< 10
= 8 < 8

MAX

MIN

� “Regular” � - � -MINIMAX search would stop
searching middle move because left move
guarantees a value of 8.� Value of “?” node determines if middle move is
same as left; it must be examined to find all optimal
moves.

4

� - � -MINIMAX search for all optimal moves

AB:MINIMAX(�)

1. let
� �������	��

= AB:MAX-PLAYER(� , �� ,)
2. let � = moves leading from � to each node ����� �
3. return

� ��� �

AB:MAX-PLAYER(� , � , �)

1. if game over or depth limit reached,
return

�
eval(�), normal, �

2. let ���
 �� ,
�
 �

3. for each child � � of �� � � � , � � , ���
�� AB:MIN-PLAYER(��� , ���! � � � � � � , �)� if
� � = normal then:

– if
� � ��� � then � � �"� � , �#�%$ ���'&

– if
� �
 ��� then

�(�"�*)+$ ���'&� if ��� � � , return
�
0, cutoff, �

4. return
� ��� , normal,

��

5

� - � -MINIMAX search for all optimal moves

AB:MIN-PLAYER(� , � , �)

1. if game over or depth limit reached,
return

�
eval(�), normal, �

2. let � �
 ,
�
 �

3. for each child � � of �� � � � , � � , � �
�� AB:MAX-PLAYER(� � , � , �-,/. � � � � �)� if
� � = normal then:

– if
� � � � � then � � �"� � , �(�%$ ���'&

– if
� �
 � � then

�0�"�) $ ���'&� if ��� � � , return
�
0, cutoff, �

4. return
� � � , normal,

�1

Notes:
� separates value of best move(s) at ancestor (� and �)

and value of best move(s) at current node (� � or � �)� keeps set of optimal child nodes
�

� AB:MAX-PLAYER and AB:MIN-PLAYER return:�
value, exit-type, best-children

� same as regular AB:MINIMAX if cutoff condition is� � � � or ��� � � for AB:MAX-PLAYER and

AB:MIN-PLAYER respectively

6

Running time of � - � -MINIMAX

� Number of nodes searched depends on the order the
children are evaluated!� � - � pruning reduces the number of nodes searched,
thereby reducing the effective branching factor.� The minimum number of leaf nodes evaluated
(i.e. for perfect ordering) is:

243
65778 779
:<; 3>=@? �#A for even B;DC 3>E�F'GH=@? � ;DC 3JIKF'GH=@? �0A for odd B

� This makes the effective branching factor
approximately L ; instead of

;
.� (Pearl 1982) shows that average search depth is

increased by approximately 4/3, corresponding to
an average branching factor of

;�M =ON

7

EXPECTIMAX

� For games with a chance element, e.g. with dice.� View search tree as the “dice move” alternating with
MAX and MIN.� When the “dice move,” an expected value is
computed.

8

