Game playing

- We will focus on two player, perfect information zero-sum games:
 - perfect information no hidden state
 - zero-sum what is good for one player is bad for the other
- We will use search to analyze these games...
- But this search is different because the two players alternate and have different objectives.
- Assume both players will always make the best move
- Key question: What is the best move?

MINIMAX search

MINIMAX(n)

1. return MAX-PLAYER(n)

MAX-PLAYER(n)

- 1. if game corresponding to node *n* is over, return value
- 2. find the children *C* of node *n*
- 3. for each child $c_i \in C$, let $v_i = \text{MIN-PLAYER}(c_i)$
- 4. return maximum v_i

MIN-PLAYER(n)

- 1. if game corresponding to node *n* is over, return value
- 2. find the children *C* of node *n*
- 3. for each child $c_i \in C$, let $v_i = \text{MAX-PLAYER}(c_i)$
- 4. return minimum v_i

MINIMAX search with alpha-beta pruning

AB/MINIMAX(n)

1. return AB/MAX-PLAYER $(n, -\infty, \infty)$

AB/MAX-PLAYER(n, α , β)

- 1. if game is over or depth cutoff reached, evaluate game state and return value.
- 2. find the children *C* of node *n*
- 3. for each child $c_i \in C$
 - $\alpha \leftarrow \max(\alpha, AB/MIN-PLAYER(c_i, \alpha, \beta))$
 - if $\alpha \geq \beta$, return β
- 4. return α

AB/MIN-PLAYER (n, α, β)

- 1. if game is over or depth cutoff reached, evaluate game state and return value.
- 2. find the children *C* of node *n*
- 3. for each child $c_i \in C$
 - $\beta \leftarrow \min(\beta, AB/MIN-PLAYER(c_i, \alpha, \beta))$
 - if $\alpha > \beta$, return α
- 4. return β