Searching to solve problems

- Basic concepts of approach
 - *State* encodes all relevant information about a problem.
 - Actions take us to a different state; have some cost.
 - Consider possible sequences of actions until goal is reached.
 - Want the lowest cost sequence that reaches goal.
- Basic concepts of searching
 - State space is a graph where vertices are states and edges are actions
 - *Search tree* represents choice of action at each step, i.e. possible paths
 - Nodes in the search tree contain the state and other information (such as parent, cost, etc.)
- Properties of searches:
 - Optimal will find the lowest cost path to G
 - *Complete* will find a path to G if one exists and will return failure otherwise (i.e. terminate)
 - Time complexity run time
 - *Space complexity* memory requirements

Types of searches

- *Blind searches* consider alternative actions without any bias
 - Breadth-first
 - Depth-first
 - Iterative deepening
 - Uniform cost
- *Heuristic searches* use a heuristic to inform their choice of action
 - Greedy
 - A*

2

Depth-first search (DFS)

- Queue formulation of algorithm:
 - Put start node on a queue Q
 - Repeat:
 - * If Q is empty, return failure
 - * Remove first node N from Q
 - \ast If N is goal, return success
 - * Add children of N to front of Q
- Properties:

Optimal?	No
Complete?	No
Time complexity	$O(b^m)$
Space complexity	O(mb)

Breadth-first search (BFS)

- Queue formulation of algorithm:
 - Put start node on a queue Q
 - Repeat:
 - * If Q is empty, return failure
 - * Remove first node N from Q
 - * If N is goal, return success
 - * Add children of N to back of Q
- Properties:

Optimal?	Yes
Complete?	Yes
Time complexity	$O(b^d)$
Space complexity	$O(b^d)$

Greedy search

- A best-first search
- "Best" = closest to goal
- Queue formulation:
 - Put start node on a queue Q
 - Repeat:
 - * If Q is empty, return failure
 - * Remove from Q the node N with lowest \hat{h} value
 - * If N is goal, return success
 - * Add children of N to of Q
- Properties:

Optimal?	No
Complete?	No

- Greedy search is like depth-first search:
- tends to follow one path as far as possible
- expanding a path which is close to the goal makes it closer to the goal!

5

The A* algorithm

- Queue formulation:
 - Put the root node on a queue Q
 - Repeat:
 - * If Q is empty, return failure
 - * Remove the node N from Q with the lowest value of $\hat{f}(\cdot) = \hat{g}(\cdot) + \hat{h}(\cdot)$
 - * if N is the goal, return success
 - * Add children of N to O
- OPEN/CLOSED list formulation:
 - Put the start node on a list OPEN
 - Create an empty list CLOSED
 - Repeat:
 - * If OPEN is empty, return failure
 - * Remove node N from OPEN with lowest value of $\hat{f}(\cdot) = \hat{g}(\cdot) + \hat{h}(\cdot)$ and add to CLOSED
 - * If N is a goal, return success
 - * For each child C of N:
 - · if C is not on OPEN or CLOSED, add to OPEN
 - · if C is on OPEN, update $\hat{f}(C)$ if necessary
 - · if C is on CLOSED and must be updated, remove C from CLOSED and add to OPEN

6

Notes on A* properties

- A* is a best-first search
- "Best" = total estimated cost from S to G, $\hat{f} = \hat{g} + \hat{h}$
- $\hat{g}(N)$ gives cost along current path from S to N
- Heuristic $\hat{h}(N)$ gives estimated cost from N to G
- An *admissible* heuristic is one that does not overestimate the distance to the goal.
- A* is like breadth-first search:
 - it tends to expand several paths at the same time
 - expanding one path makes it seem a little worse than other paths under consideration — actual cost is more than estimated cost!
- If the heuristic is *admissible*, A* is optimal
- Obviously, the better the heuristic, the more efficient the search...
- But *why* is A* optimal? What does admissibility have to do with it?

Optimality of A* (intuitively)

- The heuristic *guides* the search.
- An admissible heuristic is an optimistic heuristic.
- Why do we need an optimistic heuristic for optimality?
 - We stop at the first goal found.
 - A pessimistic heuristic could cause us to miss a route to the goal.
 - An optimistic heuristic may "mislead" the search, but we won't miss the optimal path.

7

Notation

- Path cost from S to N
 - $-\hat{g}(N)$ is the cost of the actual path
 - -g(N) is the cost of the shortest path
 - Note: $\hat{g}(N)$ ≥ g(N)
- Distance from N to G
 - $-\hat{h}(N)$ is an estimate of the cost
 - -h(N) is the cost of the shortest path
 - Admissibility means $\hat{h}(N) < h(N)$
- Total estimated cost
 - $-\hat{f}(N) = \hat{g}(N) + \hat{h}(N)$
 - -f(N) = g(N) + h(N)
 - Relationship between $\hat{f}(N)$ and f(N) in general is unknown
- ullet On an optimal path to a node N_K
 - Optimal path is $\xi \equiv N_0 = S, N_1, N_2, \dots N_K$
 - Along ξ for any node N_L ,

$$\hat{g}(N_L) = g(N_L)$$

– If $N_K = G$, for any nodes N_I and N_J on ξ

$$f(N_I) = f(N_J)$$

9

Optimality of A* (formally)

Lemma 1: A* cannot terminate with a suboptimal goal N_{G2}

Proof:

- 1. To expand a suboptimal goal N_{G2} , it must have the lowest $\hat{f}(\cdot)$ value on OPEN
- 2. The estimated cost $\hat{f}(N_{G2})$ is greater than the cost to the optimal goal $f(N_G)$
 - Because \hat{h} is admissible and N_{G2} is a goal state,

$$\begin{split} \hat{f}(N_{G2}) &= \hat{g}(N_{G2}) + \hat{h}(N_{G2}) = \hat{g}(N_{G2}) \\ f(N_{G2}) &= g(N_{G2}) + h(N_{G2}) = g(N_{G2}) \end{split}$$

• Since $\hat{g}(\cdot) \ge g(\cdot)$

$$\hat{f}(N_{G2}) \ge f(N_{G2})$$

• Since N_{G2} is suboptimal, $f(N_{G2}) > f(N_G)$, so

$$\hat{f}(N_{G2}) > f(N_G)$$

10

Proof of Lemma 1

- 3. There is a node on OPEN on the optimal path to N_G with estimated cost less than $f(N_G)$
 - Consider the optimal path to the optimal goal

$$\xi \equiv N_0 = S, N_1, N_2, \dots N_K = G$$

- There must be some node N^* from ξ on OPEN
- (Otherwise, the entire path would have been expanded and we would have already found the optimal goal.)
- A* has found an optimal path to N^* , so

$$\hat{g}(N^*) = g(N^*)$$

• Because of admissibility,

$$\hat{g}(N^*) + \hat{h}(N^*) \le g(N^*) + h(N^*)$$

 $\hat{f}(N^*) < f(N_G)$

4. Contradiction: N_{G2} does not have the lowest $\hat{f}(\cdot)$ value on open.

Optimality of A* (formally)

Lemma 2: At the beginning of each iteration of A^* , there is always a node N^* on the OPEN list with the following properties:

- N^* is on an optimal path to a goal
- A* has found the optimal path to N^*
- $\bullet \ \hat{f}(N^*) \le f(n_0)$

where n_0 is the start node.

11

Proof of Lemma 2 by induction

- Base case:
 - At the beginning, N^* is the start node n_0
- Inductive step:
 - Assume there is a node N^* on OPEN
 - In the next iteration:
 - * Suppose N^* is not expanded it will still have the same properties
 - * Suppose N^* is expanded one of its successors will be on the optimal path and added to the OPEN list. This successor will be the new N^* .
- \bullet N^* has estimated cost less than the optimal path
 - Because we have an optimal path to N^* and because $\hat{h}(\cdot)$ is admissible

$$\begin{split} \hat{f}(N^*) &= \ \hat{g}(N^*) + \hat{h}(N^*) \\ &= \ g(N^*) + \hat{h}(N^*) \\ &\leq \ g(N^*) + h(N^*) = f(N^*) \end{split}$$

– Because N^* is on the optimal path to a goal

$$\hat{f}(N^*) \le f(N^*) = f(n_0)$$

13

Optimality of A* (formally)

Theorem: Under the following assumptions:

- 1. The heuristic \hat{h} is admissible (i.e. $\hat{h}(n) \leq h(n)$).
- 2. Each node has a finite number of successors.
- 3. All arcs in the state space graph have costs $> \epsilon > 0$ for some ϵ .

A* is guaranteed to terminate with a minimal-cost path to a goal.

Proof outline:

- Lemma 1: A* cannot terminate on a suboptimal goal
- A* cannot terminate with a suboptimal path to the optimal goal
- A* must terminate if there is a path to a goal

14

Theorem proof

- A* cannot terminate with a suboptimal path to the optimal goal
 - If we are about to expand the optimal goal reached by a suboptimal path, $\hat{f}(N_G)$ must be the lowest estimated cost on OPEN.
 - Since this path is suboptimal (and because the heuristic is admissible),

$$\hat{f}(N_G) = \hat{g}(N_G) > g(N_G) = f(N_G)$$

– But by Lemma 2, there is a node N^* on the optimal path to N_G on OPEN and

$$f(N^*) \le f(N_G)$$

- Contradiction: N_G does not have the lowest estimated cost on OPEN.
- A* terminates if there is a path to a goal
 - A* continues to expand nodes deeper into the search tree
 - Because every cost is at least ϵ , the \hat{g} value of all nodes on OPEN would eventually exceed $f(n_0)$
 - *Unless* there are an infinite number of nodes with $\cos t < f(n_0)$. This cannot happen with conditions 2 and 3.

Uniform cost search

- Uniform cost search is essentially BFS for state spaces where edge costs are not the same.
- In the "standard" queue formulation, use the step:
 - Remove from Q the node N with lowest path cost $\hat{g}(\cdot)$
- Uniform cost search is equivalent to A* with $\hat{h}(\cdot) = 0$.
- This search maintains a "frontier" of nodes with (approximately) the same cost, hence the name.
- Like BFS:
 - it is optimal and complete,
 - has $O(b^d)$ time and space complexity

15

Iterative deepening

- Iterative deepening is a combination of BFS and DFS:
 - like BFS, it is optimal and complete
 - like DFS, its space complexity is not exponential
- Depth-limited search is a DFS with a depth cutoff
- Iterative deepening is repeated depth limited searches with an increasing depth cutoff, i.e. first to depth 0, then depth 1, then depth 2, and so on.
- Iterative deepening essentially throws away the results of every depth-limited search before going on to the next.
- But space complexity is O(bd), not exponential.
- ullet Time complexity is still $O(b^d)$ prior depth-limited searches take a small amount of time compared to the final depth-limited search.
- \bullet For example, suppose b=10 and d=6

d	nodes visited	d	nodes visited
0	1	4	10,000
1	10	5	100,000
2	100	6	1,000,000
3	1,000	total	1,111,111