
Searching to solve problems

� Basic concepts of approach

– State encodes all relevant information about a
problem.

– Actions take us to a different state; have some cost.
– Consider possible sequences of actions until goal

is reached.
– Want the lowest cost sequence that reaches goal.

� Basic concepts of searching

– State space is a graph where vertices are states and
edges are actions

– Search tree represents choice of action at each step,
i.e. possible paths

– Nodes in the search tree contain the state and other
information (such as parent, cost, etc.)

� Properties of searches:

– Optimal — will find the lowest cost path to G
– Complete — will find a path to G if one exists and

will return failure otherwise (i.e. terminate)
– Time complexity — run time
– Space complexity — memory requirements

1

Types of searches

� Blind searches consider alternative actions without
any bias

– Breadth-first
– Depth-first
– Iterative deepening
– Uniform cost

� Heuristic searches use a heuristic to inform their
choice of action

– Greedy
– A*

2

Depth-first search (DFS)

� Queue formulation of algorithm:

– Put start node on a queue Q
– Repeat:
� If Q is empty, return failure
� Remove first node N from Q
� If N is goal, return success
� Add children of N to front of Q

� Properties:
Optimal? No
Complete? No
Time complexity

�������
	

Space complexity
�������	

3

Breadth-first search (BFS)

� Queue formulation of algorithm:

– Put start node on a queue Q
– Repeat:
� If Q is empty, return failure
� Remove first node N from Q
� If N is goal, return success
� Add children of N to back of Q

� Properties:
Optimal? Yes
Complete? Yes
Time complexity

��������	

Space complexity
����� � 	

4

Greedy search

� A best-first search
� “Best” = closest to goal
� Queue formulation:

– Put start node on a queue Q
– Repeat:
� If Q is empty, return failure
� Remove from Q the node N with lowest

��
value

� If N is goal, return success
� Add children of N to of Q

� Properties:
Optimal? No
Complete? No

� Greedy search is like depth-first search:

– tends to follow one path as far as possible
– expanding a path which is close to the goal makes

it closer to the goal!

5

The A* algorithm

� Queue formulation:

– Put the root node on a queue Q
– Repeat:
� If Q is empty, return failure
� Remove the node N from Q with the lowest

value of
�� ��� 	�� �� ��� 		� �� ��� 	

� if N is the goal, return success
� Add children of N to Q

� OPEN/CLOSED list formulation:

– Put the start node on a list OPEN

– Create an empty list CLOSED

– Repeat:
� If OPEN is empty, return failure
� Remove node N from OPEN with lowest value

of
�� ��� 	�� �� ��� 		� �� ��� 	

and add to CLOSED
� If N is a goal, return success
� For each child C of N:�

if C is not on OPEN or CLOSED, add to OPEN�
if C is on OPEN, update

�� ��
 	
if necessary�

if C is on CLOSED and must be updated,
remove C from CLOSED and add to OPEN

6

Notes on A* properties

� A* is a best-first search
� “Best” = total estimated cost from S to G,

���� �� � ��

� �� �� 	
gives cost along current path from S to N

� Heuristic
�� �� 	

gives estimated cost from N to G
� An admissible heuristic is one that does not

overestimate the distance to the goal.
� A* is like breadth-first search:

– it tends to expand several paths at the same time
– expanding one path makes it seem a little worse

than other paths under consideration — actual
cost is more than estimated cost!

� If the heuristic is admissible, A* is optimal
� Obviously, the better the heuristic, the more efficient

the search. . .
� But why is A* optimal? What does admissibility

have to do with it?

7

Optimality of A* (intuitively)

� The heuristic guides the search.
� An admissible heuristic is an optimistic heuristic.
� Why do we need an optimistic heuristic for

optimality?

– We stop at the first goal found.
– A pessimistic heuristic could cause us to miss a

route to the goal.
– An optimistic heuristic may “mislead” the search,

but we won’t miss the optimal path.

8

Notation

� Path cost from S to N

–
�� �� 	

is the cost of the actual path
– � �� 	

is the cost of the shortest path
– Note:

�� �� 	 � � �� 	

� Distance from N to G

–
�� �� 	

is an estimate of the cost
–
� �� 	

is the cost of the shortest path
– Admissibility means

�� �� 	�� � �� 	

� Total estimated cost

–
�� �� 	�� �� �� 	 � �� �� 	

–
� �� 	�� � �� 	 � � �� 	

– Relationship between
�� �� 	

and
� �� 	

in general is
unknown

� On an optimal path to a node
��

– Optimal path is ��� �� �
	�� ��� ���������� ��
– Along � for any node

��
,

�� ���� 	�� � ���� 	
– If

 � �
�
, for any nodes

��
and

��
on �

� �� � 	�� � �� � 	

9

Optimality of A* (formally)

Lemma 1: A* cannot terminate with a suboptimal
goal

����

Proof:

1. To expand a suboptimal goal
����

, it must have the
lowest

�� ��� 	
value on OPEN

2. The estimated cost
�� �� ��� 	

is greater than the cost to
the optimal goal

� ���� 	
� Because

��
is admissible and

����
is a goal state,

�� �� ��� 	 � �� �� ��� 		� �� �� ��� 	�� �� �� ��� 	
� ������ 	 � � ������ 		� � ������ 	�� � ������ 	

� Since
�� ��� 	 � � ��� 	

�� ������ 	 � � ������ 	
� Since

����
is suboptimal,

� ������ 	�� � ���� 	
, so

�� ������ 	�� � ���� 	

10

Proof of Lemma 1

3. There is a node on OPEN on the optimal path to
 �

with estimated cost less than
� ���� 	

� Consider the optimal path to the optimal goal

��� �� �
	�� ��� ���������� �� ���
� There must be some node

 �
from � on OPEN

� (Otherwise, the entire path would have been
expanded and we would have already found the
optimal goal.)

� A* has found an optimal path to
 �

, so
�� ��!� 	�� � ��"� 	

� Because of admissibility,
�� �� � 	 � �� �� � 	#� � �� � 	 � � �� � 	

�� ��!� 	#� � ���� 	
4. Contradiction:

����
does not have the lowest

�� ��� 	

value on open.

11

Optimality of A* (formally)

Lemma 2: At the beginning of each iteration of A*,
there is always a node

!�
on the OPEN list with the

following properties:
� � is on an optimal path to a goal
� A* has found the optimal path to

 �
� �� �� � 	�� � �%$&� 	

where
$&�

is the start node.

12

Proof of Lemma 2 by induction

� Base case:

– At the beginning,
 �

is the start node
$&�

� Inductive step:

– Assume there is a node
 �

on OPEN

– In the next iteration:
� Suppose

!�
is not expanded — it will still have

the same properties
� Suppose

 �
is expanded — one of its successors

will be on the optimal path and added to the
OPEN list. This successor will be the new

 �
.

� � has estimated cost less than the optimal path

– Because we have an optimal path to
 �

and
because

�� ��� 	
is admissible

�� ��"� 	�� �� ��!� 	 � �� ��!� 	
� � �� � 	 � �� �� � 	
� � �� � 	 � � �� � 	�� � �� � 	

– Because
 �

is on the optimal path to a goal
�� �� � 	�� � �� � 	�� � �%$&� 	

13

Optimality of A* (formally)

Theorem: Under the following assumptions:

1. The heuristic
��

is admissible (i.e.
�� �%$ 	�� � �%$ 	

).

2. Each node has a finite number of successors.

3. All arcs in the state space graph have costs
� � ���

for some � .

A* is guaranteed to terminate with a minimal-cost path
to a goal.

Proof outline:
� Lemma 1: A* cannot terminate on a suboptimal goal
� A* cannot terminate with a suboptimal path to the

optimal goal
� A* must terminate if there is a path to a goal

14

Theorem proof

� A* cannot terminate with a suboptimal path to the
optimal goal

– If we are about to expand the optimal goal
reached by a suboptimal path,

�� ���� 	
must be the

lowest estimated cost on OPEN.
– Since this path is suboptimal (and because the

heuristic is admissible),
�� ���� 	�� �� ���� 	�� � ���� 	�� � ���� 	

– But by Lemma 2, there is a node
 �

on the
optimal path to

��
on OPEN and

�� ��"� 	�� � ���� 	
– Contradiction:

��
does not have the lowest

estimated cost on OPEN.
� A* terminates if there is a path to a goal

– A* continues to expand nodes deeper into the
search tree

– Because every cost is at least � , the
�� value of all

nodes on OPEN would eventually exceed
� �%$ � 	

– Unless there are an infinite number of nodes with
cost �

� �%$&� 	
. This cannot happen with conditions

2 and 3.

15

Uniform cost search

� Uniform cost search is essentially BFS for state
spaces where edge costs are not the same.

� In the “standard” queue formulation, use the step:

– Remove from Q the node N with lowest path
cost

�� ��� 	

� Uniform cost search is equivalent to A* with
�� ��� 	����

.
� This search maintains a “frontier” of nodes with

(approximately) the same cost, hence the name.
� Like BFS:

– it is optimal and complete,
– has

������� 	
time and space complexity

16

Iterative deepening

� Iterative deepening is a combination of BFS
and DFS:

– like BFS, it is optimal and complete
– like DFS, its space complexity is not exponential

� Depth-limited search is a DFS with a depth cutoff
� Iterative deepening is repeated depth limited

searches with an increasing depth cutoff, i.e. first to
depth 0, then depth 1, then depth 2, and so on.

� Iterative deepening essentially throws away the
results of every depth-limited search before going
on to the next.

� But space complexity is
����� � 	

, not exponential.
� Time complexity is still

����� � 	
— prior depth-limited

searches take a small amount of time compared to
the final depth-limited search.

� For example, suppose
� ��� �

and
� ���

d nodes visited d nodes visited
0 1 4 10,000
1 10 5 100,000
2 100 6 1,000,000
3 1,000 total 1,111,111

17

