
CSCI 2400 { Models of Computation, Section 3

Solutions to Homework 9

Problem 1.
For convenience, we will call the problem of determining whether a Turing

machine M with input w ever writes symbol a on the tape, as the \symbol-
writing problem".

We want to prove that the symbol-writing problem is undecidable. We
will prove this by reducing the halting problem to the symbol-writing problem.
Namely, we will prove that if the symbol-writing problem is decidable then the
halting problem is also decidable. (Therefore, it must be that the symbol-writing
problem is undecidable, since we know that the halting problem is undecidable.)

Let's assume that the symbol-writing problem is decidable. We have that
there is an algorithm that decides the symbol-writing problem. Using this algo-
rithm, we can design the algorithm that decides the halting problem as follows
(see also Figure 1).

Convert

M to M 0

M
0

no

yes
yes

no

Algorithm for Halting Problem

Symbol-Writing

Problem

Algorithm for

M
#

w

w

Figure 1: The algorithm that decides the halting problem

Algorithm that decides the halting problem:

Input: the input of the halting problem is a machine M and a string w,
and we want to �nd if machine M halts on input w.

� We convert machine M to machine M 0 such that machine M 0 writes a
special symbol on the tape, say symbol #, if and only if machine M halts.
We choose the special symbol # to be di�erent from any other symbol
written on the tape.

We can easily construct machine M 0 as follows. Machine M 0 is identical
with machine M . The only di�erence is that in M 0 we add transitions
from every halting state of M to a new state, and in these transitions we

1

write the symbol # on the tape. (We can easily identify the halting states
of M from the fact that these states have unde�ned transitions for some
symbols of the tape. For all these unde�ned transitions we add the new
transitions where we write symbol #.)

� We run the decision algorithm of the symbol-writing problem with input
parameters the machine M 0, the input string w, and the symbol #.

The answer to the above symbol-writing problem will be the answer to the
halting problem. This is because machine M 0 with input w writes symbol
on the tape if and only if machine M halts on input w.

Problem 2.
For convenience, we will call the problem of determining whether machine

M halts on all input, as the \all-input halting problem".
We want to prove that the all-input halting problem is undecidable. We

will prove this by reducing the halting problem to the all-input halting prob-
lem. Namely, we will prove that if the all-input halting problem is decidable
then the halting problem is also decidable. (Therefore, it must be that the all-
input halting problem is undecidable, since we know that the halting problem
is undecidable.)

Let's assume that the all-input halting problem is decidable. We have that
there is an algorithm that decides the symbol-writing problem. Using this algo-
rithm, we can design the algorithm that decides the halting problem as follows
(see also Figure 2).

Convert

M to M 0

no

yes
yes

no

Algorithm for Halting Problem

Problem

Algorithm for

All-Input Halting

M

w

M
0

Figure 2: The algorithm that decides the halting problem

Algorithm that decides the halting problem:

Input: the input of the halting problem is a machine M and a string w,
and we want to �nd if machine M halts on input w.

� We convert machine M to machine M 0 such that machine M 0 halts on all
input if and only if machine M halts on input w.

2

We can easily construct machine M 0 as follows. Machine M 0 is identical
with machine M with the di�erence that in M 0 we add transitions from
every halting state of M to a new �nal state. (We can easily identify the
halting states of M from the fact that these states have unde�ned transi-
tions for some symbols of the tape. For all these unde�ned transitions we
add the new transitions to the new �nal state.)

Furthermore, for any input string, machine M 0 �rst copies w on the tape
and then continues the computation with input string w (ignoring the
original input string). If machine M halts on w then machine M 0 enters
a �nal state and accepts the original input string. Thus, if machine M
halts on w then machine M 0 always accepts the input string.

� We run the decision algorithm of the all-input halting problem with input
parameter the machine M 0.

The answer to the above all-input halting problem will be the answer to
the halting problem.

Problem 3.
Notice that every head move corresponds to a computation move. Therefore,

function b(n) is the same with function f(n) described in Example 12.3, page
319. The solution is the same with that Example.

Problem 4.
We will call the problem of determining for two recursively enumerable lan-

guages L1 and L2 whether L1 � L2 as the \subset problem". We want to prove
that the subset problem is undecidable.

From Theorem 12.3, page 322, we know that the problem of determining
whether L1 = ; is undecidable. Let's call this problem as the \empty-set prob-
lem".

We will reduce the empty-set problem to the subset problem. Take L2 = ;.
It is easy to see that L2 is recursively enumerable, since we can construct a
Turing machine with a single state (non-�nal) and with no transitions that
accepts no string.

Obviously, if we can determine the answer to the subset problem L1 � ;,
then we can determine the answer to the empty-set problem L1 = ;.

Problem 5.
(a) Yes there is a PC-solution. The sequence of strings is: 3; 4; 1. The string
we obtain is: 11101001.
(b) There is no MPC-solution, since the �rst strings 001 and 01 cannot match.

3

