
CSCI 2400, section 3: Models of computation

Solutions to Homework 5

Problem 1.
First, we need to remove the �-productions. By removing A! � we obtain

the grammar:

S ! abABjabB

A! bABjbB

B ! BAajBajAj�

By removing B ! � we obtain the grammar:

S ! abABjabBjabAjab

A! bABjbBjbAjb

B ! BAajBajAjAaja

Next, we need to remove the unit-productions. By removing B ! A we
obtain:

S ! abABjabBjabAjabjabAA

A! bABjbBjbAjbjbAA

B ! BAajBajAajajAAa

Next, we need to remove useless productions. There are no useless produc-
tions.

Finally, transform the grammar to Chomsky normal form. First, we use new
variables Ta and Tb for the terminals a and b.

S ! TaTbABjTaTbBjTaTbAjTaTbjTaTbAA

A! TbABjTbBjTbAjbjTbAA

B ! BATajBTajATajajAATa

Ta ! a

Tb ! b

Last, we break the productions of length more than 2 to smaller productions
using new intermediate variables Vi.

S ! TaV1jTaV3jTaV4jTaTbjTaV5

V1 ! TbV2

V2 ! AB

V3 ! TbB

V4 ! TbA

1



V5 ! TbV6

V6 ! AA

A! TbV2jTbBjTbAjbjTbV6

B ! BV7jBTajATajajAV7

V7 ! ATa

Ta ! a

Tb ! b

Problem 2.
(a) The NPDA for language fanb2n : n � 0g is shown in Figure 1. The initial
stack symbol is $. The construction is similar to the one in Example 7.2, on
page 184. State q0 reads the a's, and for each a it pushes two a's in the stack.
State q2 reads the b's, and for each b it pops an a from the stack. The automaton
enters the �nal state q2 only when the bottom stack symbol $ is reached, which
means that the a's have matched twice as many b's.

b; a! �a; �! aa

�; �! � �; $! $
q0 q1 q2

Figure 1: The NDPA for language fanb2n : n � 0g

(c) The NPDA for language fanbncn+m : n;m � 0g is shown in Figure 2. The
initial stack symbol is $. State q0 reads the a's and pushes them in the stack.
State q1 reads the b's and pushes them in the stack. State q2 reads the c's
and pops an a or an b from the stack for each c it reads from the input. The
automaton enters the �nal state q3 only when the bottom stack symbol $ is
reached, which means that the a's and b's have matched the c's.

�; �! � �; $! $�; �! �

c; b! �

c; a! �

q0 q1 q2 q3

a; �! a b; �! b

Figure 2: The NDPA for language fanbncn+m : n;m � 0g

2



(h) The NPDA for language fw : na(w) = 2nb(w)g is shown in Figure 3. The
construction is similar to the one in Example 7.3, page 186. For simplicity, we
assume that � is also accepted. The initial stack symbol is $. State q0 does all
the computation. State q0 tries to match each a with a b, and each b with an
a. If it reads an a from the input and the top of the stack is b it pops the b,
otherwise it pushes a on the stack. Similar when it reads b. To make sure that
a's are twice as many as b's, whenever it needs to push a b in the stack it pushes
two b's instead. When the bottom of the stack is reached it means that all the
a's matched the b's and that the a's are twice as many than tha b's, in which
case the machine accepts the input string in state q1 (when all the input has
been read). The transition for the c symbol simply consume the c's from the
input.

a; a! aa
a; b! �

a; $! a$
b; b! bbb
b; a! b

b; $! bb$

q0 q1

c; �! �

�; $! $

Figure 3: The NDPA for language fw : na(w) = 2nb(w)g

(i) The NPDA for language fw : na(w) + nb(w) = nc(w)g is shown in Figure
4. For simplicity, we assume that � is also accepted. The initial stack symbol
is $. State q0 does the most important computation. State q0 tries to match
each c with either an a or a b. If it reads a c from the input and the top of
the stack is a (or b) it pops the a (or b), otherwise it pushes c on the stack.
When it reads an a from the input it tries to match it only with a c in the stack,
otherwise it pushes the a in the stack. Similar for b. When the bottom of the
stack is reached it means that the c's matched the a's and the b's, in which case
we can take the transition to �nal state q1 and accept the input (if all the input
is consumed).

Problem 3.
The NPDA for language fw1cw2 : w1; w2 2 fa; bg�; w1 6= wR

2 g is shown in
Figure 5. The initial stack symbol is $. State q0 pushes in the stack all the
symbols of the string w1. When the input symbol is c then the state changes
to q1. At this point the current contents of the stack is wR

1 (when we see the
stack contents from top to bottom). State q1 then reads string w2 and tries to
match the string w2 with the string wR

1 which is stored in the stack. For the
matching, when it reads an a from the input it pops and a from the stack, and

3



q0 q1
�; $! $

b; $! b$
b; a! ba

b; b! bb
b; c! �

c; c! cc

c; $! c$
c; a! �
c; b! �

a; c! �

a; $! a$
a; a! aa

a; b! ab

Figure 4: The NDPA for language fw : na(w) + nb(w) = nc(w)g

similar for b's. If q1 �nds a mismatch then the state changes to q2. A mismatch
means that wR

1 6= w2, or equivalently w1 6= wR
2 . To detect the mismatch, there

are transitions from state q1 to q2 for each possible mismatch:

Input is a, top of stack is b or $.

Input is b, top of stack is a or $.

Input is c.

In state q2 the rest of the input is consumed and the input is accepted.

q2q0

a; �! a a; a! �
b; b! �

q1
c; �! �

a; �! �

b; �! �
c; �! �

b; �! b

a; $! $

a; b! b

b; a! a

b; $! $

c; �! �

Figure 5: The NDPA for language fw1cw2 : w1; w2 2 fa; bg
�; w1 6= wR

2 g

Problem 4.

4



The corresponding NPDA for the grammar is given in Figure 6. The way we
obtained this automaton is as described in the class. For each terminal symbol,
e.g. a, we add the transition a; a ! � in the loop of q1. For each production
X ! y, we add the transition �;X ! y in the loop of q1.

q2q0 q1
�; $! $�; �! S

a; a! �

b; b! �

�; S ! aABB

�; S ! aAA
�;A! aBB

�;A! a
�;B ! bBB

�;B ! A

Figure 6: The corresponding NDPA for the grammar

Problem 5.
We will use the procedure described in the class for converting an NPDA

to an equivalent grammar. First, we modify the NPDA to an equivalent one
where the stack is emptied when the the input is accepted. In Figure 7 we see
the original and the modi�ed NPDA. In the resulting automaton all transitions
have the desired form a;A! BC or a;A! �.

Next, we continue by building the grammar for each transition. For transi-
tion a; z ! Az from state q0 to q0 we have the following productions:

(q0zq0)! a(q0Aq0)(q0zq0) j a(q0Aq1)(q1zq0) j a(q0Aqf )(qf zq0)

(q0zq1)! a(q0Aq0)(q0zq1) j a(q0Aq1)(q1zq1) j a(q0Aqf )(qf zq1)

(q0zqf )! a(q0Aq0)(q0zqf ) j a(q0Aq1)(q1zqf ) j a(q0Aqf )(qf zqf )

For transition b; A! AA from state q0 to q0 we have the following productions:

(q0Aq0)! b(q0Aq0)(q0Aq0) j b(q0Aq1)(q1Aq0) j b(q0Aqf )(qfAq0)

(q0Aq1)! b(q0Aq0)(q0Aq1) j b(q0Aq1)(q1Aq1) j b(q0Aqf )(qfAq1)

(q0Aqf )! b(q0Aq0)(q0Aqf ) j b(q0Aq1)(q1Aqf ) j b(q0Aqf )(qfAqf )

For transition a;A! � from state q0 to state q1, we have the following produc-
tion:

(q0Aq1)! a

5



q0
a; A! �

a; z ! Az
b; A! AA

q1

q0 q1
a; A! �

a; z ! Az
b; A! AA

Modi�ed NPDA

Original NPDA

qf
�; z ! �

�;A! �

Figure 7: The original and the modi�ed NPDA

6



For transition �;A! � from state q1 to state q1, we have the following produc-
tion:

(q1Aq1)! �

Finally, for transition �; z ! � from state q1 to state qf , we have the following
production:

(q1zqf )! �

The start variable of the grammar is:

(q0zqf )

By examining the NPDA it is easy to see that the language accepted is
ab�a. Therefore a string accepted of length four is abba. The same string is also
generated by the grammar with the following leftmost derivation:

(q0zqf ) ) a(q0Aq1)(q1zqf )

) ab(q0Aq1)(q1Aq1)(q1zqf )

) abb(q0Aq1)(q1Aq1)(q1Aq1)(q1zqf )

) abba(q1Aq1)(q1Aq1)(q1zqf )

) abba(q1Aq1)(q1zqf )

) abba(q1zqf )

) abba

7


