
CSCI 2400 { Models of Computation, Section 3

Solutions to Homework 4

Problem 1. All the solutions below refer to the Pumping Lemma of Theorem
4.8, page 119.

(a) L = fanblak : k � n+ lg

Let's assume for contradiction that L is a regular language. We apply the
pumping lemma to L. Let m be the parameter of the pumping lemma.
We choose to pump the string ambma2m which is in the language L, since
2m � m+m (we have n = m, l = m, and k = 2m). Since xyz = ambma2m

and jxyj � m we have that the string y is a substring of the �rst am of
ambma2m. Therefore, the string y has the form y = ap, for some integer
p, 1 � p � m (since jyj � 1). Now, we pump up y once and we obtain the
string am+pbma2m which is a string identical to ambma2m with the only
di�erence that we replace y with y2. By the pumping lemma, we have
that am+pbma2m is in the language L. However, am+pbma2m is not in
the language L since 2m < m+ p+m (violating the condition k � n+ l,
where n = m+p, l = m, and k = 2m). Therefore, we have a contradiction.
Subsequently, our original assumption that the language L is regular must
be wrong. Therefore, the language L is not regular.

(b) L = fww : w 2 ��g

Let's assume for contradiction that L is a regular language. We apply the
pumping lemma to L. Let m be the parameter of the pumping lemma.
We choose to pump the string ambmambm which is in the language L,
since ambmambm = ww with w = ambm. Since xyz = ambmambm and
jxyj � m, we have that the string y is a substring of the �rst am of
ambmambm. Therefore, the string y has the form y = ap, for some integer
p, 1 � p � m (since jyj � 1). Now, we pump up y once and we obtain
the string am+pbmambm which is a string identical to ambmambm with the
only di�erence that we replace y with y2. By the pumping lemma, we have
that am+pbmambm is in the language L. However, am+pbmambm is not in
the language L since there is no string w such that am+pbmambm = ww.
Therefore, we have a contradiction. Subsequently, our original assumption
that the language L is regular must be wrong. Therefore, the language L
is not regular.

(c) L = fak
2

g

Let's assume for contradiction that L is a regular language. We apply the
pumping lemma to L. Let m be the parameter of the pumping lemma.
We choose to pump the string am

2

which obviously is in the language L.

1



For convenience, we rewrite am
2

as

am
2

= amam � � � am;

where am is repeated m times. Since xyz = amam � � �am and jxyj � m,
we have that the string y is a substring of the �rst am of amam � � � am.
Therefore, the string y has the form y = ap, for some integer p, 1 � p � m

(since jyj � 1). Now, we pump up y once and we obtain the string
am+pam � � � am which is a string identical to amam � � � am with the only
di�erence that we replace y with y2. By the pumping lemma, we have
that am+pam � � � am is in the language L.

On the other hand, we can rewrite am+pam � � � am as

am+pam � � � am = apamam � � � am

= apam
2

= am
2
+p:

The string am
2
+p would be in the language L if there would exist an

integer k such that am
2
+p = ak

2

. But there is no such k. To prove this,
observe the following:

m2 < m2 + p < m2 + 2m+ 1 = (m+ 1)2;

since p � m. This implies that

m2 < k2 < (m+ 1)2:

Taking the square roots we obtain,

m < k < m+ 1;

which is impossible, since m and k are positive integers. Therefore, there
in no k such that am

2
+p = ak

2

. Subsequently, the string am
2
+p is not in

the language L.

Therefore, we have a contradiction. Subsequently, our original assumption
that the language L is regular must be wrong. Therefore, the language L
is not regular.

(d) L = fuwwRv : u; v; w 2 �+; juj � jvjg

Let's assume for contradiction that L is a regular language. We apply the
pumping lemma to L. Let m be the parameter of the pumping lemma.
We choose to pump the string (ab)maa(ba)m which is in the language
L, by taking u = (ab)m, wwR = aa, and v = (ba)m (notice that juj =
jvj, and thus the condition juj � jvj holds). We note that in the string
(ab)maa(ba)m the rightmost location of the middle of any substring of
the form wwR must appear within the middle substring aa. Since xyz =
(ab)maa(ba)m and jxyj � m, we have that the string y is a substring of the

2



�rst u = (ab)m. Now let's pump down the string y, by removing it from
the string (ab)maa(ba)m. The resulting string has the form u0aa(ba)m,
where u0 is idectical with the substring u = (ab)m with the di�erence that
y is removed. By the pumping lemma we have that the string u0aa(ba)m

is in the language L.

On the other hand, we have that ju0j < juj (since we pumped down y, and
jyj � 1). Notice now that in the string u0aa(ba)m the rightmost location of
the middle of any substring of the form wwR must appear in the substring
aa, right after u0. For wwR = aa, the string u0aa(ba)m can be written in
the form u0wwRv, with ju0j < juj = jvj. Therefore, the condition ju0j � jvj
of language L is violated. The same violation occurs even when we identify
the string wwR as any other possible substring of u0aa(ba)m (which could
possibly span u0 and v), since the middle of that substring appears in or
at the left from aa. Therefore, the string u0aa(ba)m is not in the language
L.

Therefore, we have a contradiction. Subsequently, our original assumption
that the language L is regular must be wrong. Therefore, the language L
is not regular.

Problem 2.

(a) L = fw : na(w) 6= nb(w)g

Not regular.

Intuitive explanation: For any string in this language we need to keep
count of the numbers of a's and b's so that we compare them. A �nite
automaton cannot count the numbers of a's and b's in an arbitrary input
string, since the number of states is �nite and the input string length can
be arbitrarily large.

Formal Explanation: Consider the complement languageL = fw : na(w) =
nb(w)g. By the pumping lemma, the language L is not regular (you can-
not pump the string ambm). Since regular languages are closed under
complement, it follows that the language L is not regular either (if L was
regular then L would be regular too).

(b) L = fanbl : n � 100; l � 100g

Regular.

Explanation: You can construct a �nitite automaton that accepts this
language. The automaton has two parts connected in series. The �rst
part recognizes strings of the form an with n � 100 (this part consists
from a sequence of 100 states, each state for a single a, then followed by
a loop state for the a's after the 100th a). The second part recognizes
strings of the form bl, where l � 100 (this part consists from a sequence
of 100 states, each state for a single b, and each state is a �nal state).

3



(c) L = fuwwRv : u; v; w 2 �+g

Regular.

Explanation: The regular expression that describes this language is

(a+ b)+(aa+ bb)(a+ b)+

where the superscript \+" means 1 or more repetitions (the superscript
\�" means 0 or more repetitions).

(d) L = fbnalbk : n > 5; l > 3; l � kg

Not Regular.

Intuitive explanation: For any string in this language we need to keep
count of the numbers of a's and b's so that we compare them. A �nite
automaton cannot count the numbers of a's and b's in an arbitrary input
string, since the number of states is �nite and the input string length can
be arbitrarily large.

Formal Explanation: Consider the reverse language LR = fbkalbn : n >

5; l > 3; l � kg. By the pumping lemma, the language LR is not regular
(you cannot pump the string bmama4b6). Since regular languages are
closed under reversal, it follows that the language L is not regular either
(if L was regular then LR would be regular too).

Problem 3.

(a) L = fw : w starts and ends with the same symbol, and w 2 fa; bg�g

The following grammar generates languageL, where S is the start variable.

S ! aTa j bT b

T ! aT j bT j �

The variables S generate any string that starts and ends with the same
symbol. The variable T generates any string made from a's and b's.

(b) The complement of the language L = fanbng.

The following grammar generates languageL, where S is the start variable.

S ! A1 j A2 j A3 j B

A1 ! aA1 j a

A2 ! A1X j A1XaT

A3 ! XbT j XaT

4



B ! bT

X ! aXb j ab

T ! aT j bT j �

The variables of the grammar correspond to a case analysis of the possible
strings. The variables A1, A2 and A3 generate all the strings that start
with an a, and the variable B generates all the strings that start with a
b. Therefore, the start variable S covers all the cases.

In order to generate the desired strings we use the helping variables X
and T as follows. The variable X generates all the strings of the form
anbn, which we want to avoid (since these are excluded from the desired
language). The variable T generates any string made from symbols a and
b (namely, the language (a+ b)�).

The three cases of strings starting with a are the following:

{ Variable A1: generates any string of the form a�.

{ VariableA2: generates any string of the form a+anbn and a+anbna(a+
b)�.

{ Variable A3: generates any string of the form anbn(a+ b)+.

(The + superscript means one or more occurence.) These are all the
cases of strings starting with an a. Notice that variables A2 and A3 deal
with the case where anbn is a substring. The way we remove anbn is by
concatenating other strings to the left and right of anbn.

(c) L = fw : na(w) = 2nb(w);where w 2 fa; bg�g

The following grammar generates languageL, where S is the start variable.

S ! SS j �

S ! aaSb j aSab j aSba

S ! abSa j baSa j bSaa

This is a modi�cation of the grammar of Example 1.12 in page 23 which
handles the case na(w) = nb(w). The main di�erence here is that we add
an extra symbol a to each possible position of the righthand side of each
production that has a terminal a.

(d) L = fw#x : wR is a substring of x, where w; x 2 fa; bg�g

The following grammar generates languageL, where S is the start variable.

S ! AT

A! aAa j bAb j #T

T ! aT j bT j �

5



The strings in the language have the form w#uwRv, where u and v are
strings of the form (a+ b)� (any string made from symbols a and b). The
variable T generates the strings u and v, while variable A generates the
string w#uwR and the variable S generates the desired string w#uwRv.

Problem 4.

(a) The string s = aab has the following two leftmost derivations:

S ) aaB ) aab

S ) AB ) AaB ) aaB ) aab

(b) The two derivation trees of string aab are shown in Figure 1.

S

a B

b

a

S

A B

A a

a

b

S ) AB ) AaB ) aaB ) aab

S ) aaB ) aab

Figure 1: The two derivation trees of string aab

6



(c) The equivalent unambiguous grammar is the following:

S ! Ab

A ! ajAa

This grammar is not ambiguous because at any derivarion step there is
only one choice to make. This grammar is equivalent to the previous
grammar becase both grammars generate the same language: all the stings
that start with one or more a's and end with a single b.

(d) With the new grammar the unique leftmost derivation and derivation tree
of the string aab are shown in Figure 2.

S

A b

A a

a

S ) Ab) Aab) aab

Figure 2: The derivation of string aab with the unambiguous grammar

7


