Solutions to Homework 3

Problem 1.

• (b). All strings not ending in 01:

$$\lambda + 0 + 1 + (0 + 1)^*(00 + 10 + 11).$$

The expression $\lambda + 0 + 1$ describes the strings with length zero or one, and the expression $(0+1)^*(00+10+11)$ describes the strings with length two or more.

• (c). All strings containing an even number of 0's:

$$1^* + (1^*01^*0)^*1^*$$
.

The first expression 1^* describes the strings with no 0's. The expression (1*01*0)*1* describes the strings with at least two 0's. You need to notice that any 0 must be followed by a matching 0 and between them there could be zero or more occurrences of 1's.

• (d). All strings having at least two occurences of the substring 00:

$$(1+0)*00(1+0)*00(1+0)* + (1+0)*000(1+0)*.$$

The expression (1+0)*00(1+0)*00(1+0)* describes the strings with two separate occurrences of the substring 00. The expression (1+0)*000(1+0)* describes the strings where two 00's appear in the substring 000.

• (f). All strings not containing the substring 101:

$$0^*(1^*000^*)^*1^*0^*$$
.

Notice that a 1 may be followed by either a 1 or by a 00, and this pattern can be repeated as many times as we want. This pattern is expressed in (1*000*)*. The extreme cases where a string can start or end with 0's or contain only 1's are covered by the expressions left and right from the pattern (1*000*)*.

Problem 2.

We want to show that the family of regular languages is closed under symmetric difference. All we need to show is that for any two regular languages L_1 and L_2 , the language $L_1 \ominus L_2$ is regular. From the definition of the symmetric difference, (using set diagrams) we observe that:

$$L_1 \ominus L_2 = (L_1 \cup L_2) \cap \overline{(L_1 \cap L_2)}.$$

From Theorem 4.1, we know that the regular languages are closed under union, intersection, and complement. Therefore, we have that the language $L_1 \ominus L_2$ is regular, as needed.

Problem 3.

$$S \to aaB | \lambda$$

$$B \to bB$$

$$B \to abS$$

The production $S \to aaB$ corresponds to the first substring aa in the expression $(aab^*ab)^*$. The variable B generates the middle b^* and the last ab. The production $B \to abS$ implements the outmost star operation.

Problem 4.

$$S \to A_e | A_o$$
(Both n and m are even)
$$A_e \to aaA_e | B_e$$

$$B_e \to bbB_e | \lambda$$
(Both n and m are odd)
$$A_o \to aaA_o | aB_o$$

$$B_o \to bbB_o | b$$

Notice that n + m is even if either

- both n and m are even, or
- both n and m are odd.

The strings where both n and m are even are generated by the variables A_e and B_e . Here, the production A_e generates an even number of a's and the production B_e generates an even number of b's. The strings where both n and m are odd are generated in a similar way by the productions A_o and B_o .

Problem 5.

Consider a regular language L. From Theorem 3.4, we know there exists a right-linear grammar G with L(G) = L. In general, the productions of a right linear grammar have the form

$$A \to a_1 a_2 \dots a_n B$$

We need to transform such kind of productions to productions of the form $A \to aB$. To do this we introduce new intermiate variables B_1, B_2, \ldots , and we rewrite the production $A \to a_1 a_2 \ldots a_n B$ as

$$\begin{array}{cccc} A & \rightarrow & a_1B_1 \\ B_1 & \rightarrow & a_2B_2 \\ B_2 & \rightarrow & a_3B_3 \\ & & \dots \\ B_{n-1} & \rightarrow & a_nB \end{array}$$

In a similar way we transform productions of the form $A \to a_1 a_2 \dots a_n$ to productions of the form $A \to aA$ and $A \to a$.

We still need to take care of the extreme cases where in the grammar G there are rules of the form $A \to B$ or $A \to \lambda$. For the case $A \to B$ we look at all the productions whose righthandside end with the variable A and we substitute this with the variable B, then we remove the production $A \to B$ from the grammar. We repeat this process until no more rules of this form appear in the grammar. For the case $A \to \lambda$ we look at all the productions whose righthandside end with the variable A and we substitute this with λ . We repeat this process until no more rules of this form appear in the grammar.

Problem 6.

We are given two regular grammars G_1 and G_2 . Let's assume that these are right-linear grammars. Let S_1 be the start variable of G_1 , and S_2 be the start variable of G_2 .

For the union, we construct a new grammar G such that G contains all the productions from G_1 and G_2 and it has two additional rules $S \to S_1|S_2$, where S is the new start variable of G. It is easy to see that G will generate all the strings of grammars G_1 and G_2 , and therefore $L(G) = L(G_1) \cup L(G_2)$.

For the concatenation, we construct a new grammar G from the grammars G_1 and G_2 as follows. Find all the productions of G_1 that have the form $A \to a_1 a_2 \ldots a_n$ (these are the productions that produce only terminals). Add to the right end of the righthand side of each such production the variable S_2 , so that these rules are transformed to $A \to a_1 a_2 \ldots a_n S_2$. Now, the grammar G will consist from the productions of the transformed grammar G_1 and the productions of the grammar G_2 . The start variable of G is G_1 . It is easy to see that using G we can generate strings such that: at the point where the generation of a substring from grammar G_1 finishes, the generation of a substring of G_2 starts. Therefore, grammar G_1 generates the language G_1

For the star operation, the construction is similar with the concatenation. The difference now is that we only have grammar G_1 , and the transformed productions are of the form $A \to a_1 a_2 \dots a_n S_1$. The start variable is S_1 . We also add the production $S_1 \to \lambda$.

The constructions above are for the case where both grammars are right-linear. The case where the grammars are left-linear is similar. In case where

one grammar is left-linear and the other is right-linear we need to convert the left-linear grammar to a right-linear. We can do this by applying techniques similar to Theorems 3.3, 3.4, 3.5 and Excersise 12, Section 2.3.