
CSCI 2400 { Models of Computation, Section 3

Programming Assignment 2 { Yacc

Return Day: Monday, December 4.
Teams: You are encouraged to form teams of 2 persons.

1 Overview

In this assignment you will use the parser generator yacc to construct an in-

terpreter for the Snail programming language which we describe below. The
interpreter executes the statements of a Snail program in sequence as they ap-
pear in the program.

In Section 2 we describe the Snail programming language. In Section 3 we
give the grammar of the Snail language. In Section 4 we describe what your
yacc code will do. In Section 5 are instructions to handin your assignment.

2 Snail Programming Language

Snail is a very simple programming language. The body of a Snail program
consists from a sequence of statements. There are four kinds of statements:
assign, print, if, and while. A basic component for all kinds of statements is the
expression. The expression and the statements are described below.

� expression:

An expression is any mathematical expression made from identi�ers, inte-
gers, parenthesis, the arithmetic operators

+ - * /

and the comparison operators

< > <= >= == !=

For example, this is a valid expression:

10 + 20 * (10 < 3)

The value of an expression is obtained by executing all the arithmetic
operations in the expression. The result of a comparison operation is 1 if
the comparison result is true, and 0 otherwise. For example, the above
expression has value 10 (since, 10 < 3 = 0).

The value of an identi�er is the last value assigned to it in an assign
statement. An identi�er which hasn't been assigned a value before cannot
be used inside an expression and in this case you should report an error
message.

1

� assign statement:

The assign statement has the form:

identifier = expression ;

For example, this is a valid assign statement:

var1 = 20 - 3*2 ;

In the assign statement the identi�er gets the value of the expression. As
an example, in the above assign statement the new value of variable var1
is 14.

� print statement:

The print statement print messages on the screen. The print statement
has one of following forms:

print ``string''; //prints the string

print newline; //prints a newline character

print expression ; //prints the expression value

For example, the execution of the following statements

print ``The value of 10*5 is '';

print 10*5;

produces the output:

The value of 10*5 is 50

� if statement:

An if statement has two forms:

if expression then //if-then statement

statement

statement

... //more statements

endif

if expression then //if-then-else statement

statement

... //more statements

else

statement

... //more statements

endif

2

The \if-then" form means that if the expression value is not 0 then the
sequence of statements between then and endif will be executed. The
\if-then-else" form means that if the expression value is not 0 then the
statements between then and else will be executed, and otherwise, if
the expression value is 0, the statements between else and endif will be
executed. For example, the following is a valid if statement:

if (x < 10) then

print ``x is smaller than ten'';

x = x - y + 20;

else

x = 10* y;

endif

� while statement:

A while statement has the following form:

while expression do

statement

statement

...

endwhile

The while statement implements a loop which executes the statements
between do and endwhile for as long as the expression value is not 0. As
an example the following while statement will iterate for �ve times:

v = 1;

while v <= 5 do

print v; // print the value of v

print newline;

v = v + 1; // increase v by 1

endwhile

A Snail program is a sequence of statements and has the following general form:

statement

statement

...

statement

We can have comments in a Snail program right after \//". An simple example
Snail program is the following:

v = 10;

i = 0;

3

while i <= v do

print i*i; // print the square of i

if (i == v/2) // is i the half of v?

print newline; //yes

else

print ``--''; //no

endif

i = i + 1;

endwhile

print ``end of execution'';

The output of the program is:

0--1--4--9--16--25

36--49--64--81--100

end of execution

3 Snail Grammar

All the Snail programs can be described by the the context-free grammar of
Figure 1. The start variable is program, the grammar variables are in small
letters, and the terminals in capital letters. Notice that although this grammar
is ambiguous in the expr variable, all the ambiguities can be removed using the
precedence rules of yacc.

4 Yacc Code

You will write a yacc code which implements the interpreter for Snail programs.
The main part of your yacc code will consist from the snail grammar. You will
add actions to the grammar so that your interpreter does the following for any
input Snail program:

1. builds the derivation tree of the program, and then

2. \executes" the derivation tree.

The derivation tree (see Chapter 5 in Book) has a node for each variable
and terminal. At the root of the tree is the variable program. An example Snail
program and derivation tree is shown in Figure 2.

To build the derivation tree you need a special routine, e.g. build tree,
which you will invoke at each production of your grammar. Your nodes of your
tree must be general enough to accomodate all the di�erent kinds of productions,
variables and terminals in the grammar. You need a mechanism to distinguish
between the various kinds of nodes. (for example, you can have a variable kind
inside each node).

By \executing the tree" we mean that we traverse the tree recursively from
the root to the leaves and execute the code that corresponds to each node of

4

program -> stmt_list

stmt_list -> stmt_list stmt

| stmt

stmt -> assign_stmt

| print_stmt

| if_stmt

| while_stmt

assign_stmt -> ID = expr ;

print_stmt -> PRINT expr ;

| PRINT string ;

| PRINT NEWLINE ;

if_stmt -> IF expr THEN stmt_list ENDIF

| IF expr THEN stmt_list ELSE stmt_list ENDIF

while_stmt -> WHILE expr DO stmt_list ENDWHILE

expr -> (expr)

| expr + expr

| expr - expr

| expr * expr

| expr / expr

| expr < expr

| expr > expr

| expr <= expr

| expr >= expr

| expr == expr

| expr != expr

| - expr

| INT

| ID

Figure 1: The snail grammar

5

program

stmt_list

stmt

print_stmt

exprprint ;

expr

10 5

+ expr

derivation tree

Program: print 10+5;

Figure 2: A small Snail program and its derivation tree

6

the tree. For this you will need to write a special routine, e.g. execute tree.
The main part of execute tree is a big switch statement for the various kinds
of nodes. The pseudocode for execute tree is as follows:

execute_tree(tree) {

root = root(tree);

left_child = root.left_child;

middle_child = root.middle_child

right_child = root.right_child;

switch (root.kind) {

case expr_plus: execute_tree(left_child));

execute_tree(right_child);

root.value = left_child.value +

right_child.value;

case expr_minus:

......

case print_expr : execute_tree(middle_child);

printf(``%d'', middle_child.value);

.....

}

}

Each expr node must have a value variable which holds the current value of the
expression. The execute tree routine computes the expr values recursively, by
computing the values of the children expr �rst. The value of the ID (identi�er)
can be stored in the symbol table.

For an assign node we update the value of the ID child in the symbol table
to be equal to the value of the expr child.

For a print node we just print the contents (or value) of the middle child,
which can be either a STRING, a expr or NEWLINE.

For an if node, we �rst execute the expr child and then if the value of
expr is not 0 we execute the if-then stmt list child. Otherwise, we execute
the if-else stmt list.

For a while node, we repeatedly do the following: �rst we execute the expr
child and if the value of expr is not 0 we execute the stmt list node. When
the value of expr is zero the execution of the while node has �nished.

Both routines build tree and execute tree will be invoked in the action
part of the program variable.

Your yacc program will use the lexical analyzer of the �rst programming
assignment and for this you need to modify appropriately the lex code.

7

5 HandIn

You should handin your lex and yacc code. Also you should handin the output
for various Snail programs which will be given in the course web page.

In the course web page you can also �nd example yacc programs (together
with lex programs) that may help you to get started with your assignment. For
more information about yacc and lex visit the web page:

http://www.combo.org/lex_yacc_page/

8

