
CSCI 2400 { Models of Computation, Section 3

Solutions to Practice Final Exam

Here are solutions to the practice �nal exam. For some problems some details
are missing for brevity. You should write complete solutions at the �nal exam.

1. Prove that the following language is not context-free.

L = faibjck : 0 � i � j � kg

Answer. Let m be the parameter of the pumping Lemma. We choose to pump
the string ambmcm.

The string vxy has length at mostm. Notice that v cannot be simultaneously
in am and bm, since if we repeat v (we take v2xy2) then a's are mixed with
b's and the resulting string is not in the language L. Similarly, v cannot be
simultaneously in bm and cm. A similar observation holds for y.

Now let's consider the case where vxy is completely within am. If we pump
up the string vxy and we take v2xy2, then the resulting string has the form
am+kbmcm, for some k > 0 (since jvyj � 1), which is not in the language L. For
similar reasons vxy cannot be completely within bm and cm.

Now we consider the case where vxy is such that v is completely within am,
and y is completely within bm. If pump up the string vxy once and we obtain
the string v2xy2, then the resulting string has the form am+k1bm+k2cm, with
k1 + k2 � 1 (since jvyj � 1), which is not in the language L. We treat similarly
the case where vxy is such that v is completely within bm, and y is completely
within cm.

Therefore, in all cases the resulting string is not in the language L, and
therefore the language L is not context-free.

2. Prove that the following language is context-free.

L = fwwR : w 6= abba; and w 2 fa; bg�g

Answer. We know that the language L1 = fwwR : w 2 fa; bg�g is context-free,
since it is generated by the context-free grammar:

S ! aSajbSbj�

The language L2 = fabbaabbag is regular, since it is described by the regular
expression abbaabba. Therefore, the language L2 is regular too (the complement
of a regular language is regular). We have:

L = L1 \ L2
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From Theorem 8.5, page 223, we have that the intersection of a context-free
language with a regular language is context-free. Therefore, the language L is
context-free.

3. Design a Turing Machine that accepts the following language.

L = fab(a+ b)�g

a! a; R b! b; R

Figure 1: Turing machine for language L = fab(a+ b)�g

Answer. The Turing machine for language L is shown in Figure 1. Notice
that the machine doesn't have to read all the input string in order to accept the
string. This is because we know the input string alphabet which is fa; bg, and
after string ab any string made from the input alphabet can follow.

4. Describe the algorithm of a three-tape Turing machine that computes the
following function.

f(x) = x2

Answer. The algorithm is the following:

Compute-Square

Input: The input is number x in unary notation which appears on the
�rst tape.

i. Copy x to the second and third tape.

ii. Append the contents of the second tape to the end of the contents of the
�rst tape.

iii. Remove one 1 from the string of the third tape.

iv. If more than one 1's are still on the third tape goto step ii.
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5. Show that the class of Pushdown Automata with two stacks are equivalent
with the Turing machines.

Answer. We want to show that Turing machines can simulate Pushdown Au-
tomata with two stacks and vice versa.

� Turing machines simulate pushdown automata with two stacks.

Pushdown automata are non deterministic. For this reason we choose non-
deterministic Turing machines (which are equivalent to standard Turing
machines) to simulate the pushdown automata.

We split the tape of the Turing machine into two halfs. We place a marker
symbol somewhere on the tape to denote the border between the two half-
s. The part of the tape left from the marker simulates one stack and the
part of the tape right from the marker simulates the second stack. The
bottom of the two stacks is the marker. You can imagine the rest of the
details.

� Pushdown automata with two stacks simulate Turing machines.

The only diÆcultly is to simulate the Turing machine tape with two stacks.
We can think of the two stacks as being concatenated at their tops. When
we want to get to a symbol which is in the �rst stack then we pop all the
contents of the �rst stack above that symbol and we push these contents
to the second stack. This way we can access any symbol stored in a
stack without loosing any contents. Essentially this simulates the tape
of a Turing machine where the head corresponds to the heads of the two
stacks (which point at the top of the stacks). You can imagine the rest of
the details.

6. Describe a procedure that enumerates the following strings in proper order.

S = f12
n

: n � 0g

Answer. The proper order is:

1; 11; 1111; 11111111; : : :

Notice that each string is twice as big as the previous string. The enumeration
procedure is the following.

Enumeration Procedure

i. Write 1 on the tape. This is an enumerated string.
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ii. Copy the contents of the previously enumerated string next to that string.
This is an enumerated string.

iii. Goto step ii.

7. Prove that the family of recursively enumerable languages is closed under
union.

Answer. Let L1 and L2 be two recursively enumerable languages. We want
to prove that the language L = L1 [ L2 is recursively enumerable. We can
prove this by giving an enumeration procedure for L (see the discussion on page
287). Since L1 and L2 are recursively enumerable then there are respective
enumeration procedures M1 and M2 for each language. We can construct an
enumeration procedure M for L as follows. Enumeration procedure M inter-
leaves the computation of M1 and M2. In particular, M allows M1 to write its
�rst string, then allows M2 to write its �rst string, then allows M1 to write its
second string, then allows M2 to write its second string, and so on. The above
procedure enumerates all the strings of L.

As an alternative proof you could construct a Turing machine that accepts
the union.

8. Prove that the family of recursive languages are closed under intersection.

Answer. Let L1 and L2 be two recursive languages. We want to prove that
the language L = L1 \L2 is recursive. Since L1 and L2 are recursive, there are
respective Turing machines M1 and M2 which accept each language and halt
for each input string. From M1 and M2 we can construct a Turing machine
that accepts L and halts for each input string as follows. For input string w

machine M �rst allows machine M1 to run with input string w. If M1 rejects
then M rejects. If M1 accepts then M allows M2 to run with input string w. If
M2 accepts then M accepts. If M2 rejects then M rejects.

9. Prove that the problem of determining whether w 2 L(G), where G is a
context-free grammar, is decidable.

Answer. This problem is decidable because there are many algorithms that
answer this problem. See for example the exhaustive search parsing method,
described in page 141, and the CYK algorithm, described in Section 6.3, page
178.
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10. Prove that the problem of determining whether two Turing machines accept
the same language is undecidable.

Answer. This problem is equivalent with the following problem. Determine
for two recursively enumerable languages L1 and L2 whether L1 = L2. We will
call this the \language-equality problem".

We know that the following problem is undecidable. Given any recursively
enumerable language L1 determine whether L1 = ; (see Theorem 12.3, page
322). We will call this the \empty-language problem".

We will reduce the empty-language problem to the language-equality prob-
lem. In particular, set L2 = ; (trivially, L2 is a recursively enumerable language
since we can easily construct a Turing machine that accepts no string). Obvi-
ously, if we can solve the language-equality problem L1 = ;, then we can solve
the empty-language problem L1 = ;.
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