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Abstract Clustering algorithms generally accept a parameter k from the user, which
determines the number of clusters sought. However, in many application domains, like doc-
ument categorization, social network clustering, and frequent pattern summarization, the
proper value of k is difficult to guess. An alternative clustering formulation that does not
require k is to impose a lower bound on the similarity between an object and its correspond-
ing cluster representative. Such a formulation chooses exactly one representative for every
cluster and minimizes the representative count. It has many additional benefits. For instance,
it supports overlapping clusters in a natural way. Moreover, for every cluster, it selects a
representative object, which can be effectively used in summarization or semi-supervised
classification task. In this work, we propose an algorithm, SimClus, for clustering with
lower bound on similarity. It achieves a O (logn) approximation bound on the number of
clusters, whereas for the best previous algorithm the bound can be as poor as O (n). Experi-
ments on real and synthetic data sets show that our algorithm produces more than 40% fewer
representative objects, yet offers the same or better clustering quality. We also propose a
dynamic variant of the algorithm, which can be effectively used in an on-line setting.
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1 Introduction

In many application domains that involve clustering, it is difficult to obtain a good guess for
the number of clusters. Consider a scenario where the top search results obtained through a
query on a search engine are clustered to display the result in a hierarchical manner [29]. The
documents at the top level are the representative documents for the clusters that contain the
documents lower in the hierarchy. However, the number of clusters in this clustering task can-
not be fixed before-hand, rather they should be chosen based on homonymy to the query word.
The number may also depend on the size and the dissonance of the documents in the result-
set. Data compression, summarization or representative sampling poses another compelling
application domains. For example, in frequent pattern summarization [9,28], depending on
the data set and the support criteria, the number of frequent patterns changes dramatically, so
a compression (summarization) algorithm that just returns the top-k representative patterns
through clustering is not that intuitive, since the user has no idea regarding a value of & that
would return a potentially useful summary set. Besides these, in many dynamic platforms,
like newsgroups and blogosphere, where the number of topics is typically unknown, finding
aright value of k is always challenging. Furthermore, it is also not feasible to try out different
values of k and analyze the result-set (off-line) due to the highly dynamic nature of these
domains.

Even if the value of k is known (for instance, in a static document collection where
the number of topics is fixed), it still may not be good to partition the data directly using
k partitions. Recent studies on document categorization suggest that documents are usu-
ally sampled from a nonlinear low-dimensional manifold that is embedded in the high-
dimensional ambient space [13]. In such cases, the cluster boundaries are highly irregular, so
only one prototype (as in k-Means) may not be able to capture the arbitrary-shaped clusters.
In such cases, multiple (the exact number depends on how irregular the cluster shape is) cen-
ters may be required to represent each cluster effectively. Actually the idea of finding smaller
clusters and merging them together to obtain a desired number of final clusters has been
proposed in the domain of arbitrary-shape clustering [10, 18], community finding [25], and
gene functional classification [16]. An alternative to the parameter k that defines the number
of clusters, is to provide a lower bound, B, that defines the desired (minimum) similarity
between a cluster member and a representative object in that cluster. Generally, the similarity
measures that are used in clustering (Cosine similarity, Jaccard coefficient) have a typical
range from O (for completely disjoint) to 1 (for identically similar), so a lower bound can be
chosen sensibly. Also, a small random sample of objects can be used to find a rough estimate
of the typical similarity in a collection of objects to enable a good guess of the lower bound
value. The above clustering paradigm has many benefits. First, the lower bound of similar-
ity between a member object and a representative object automatically imposes a similarity
bound among the members of a cluster, which cannot be claimed for the typical EM-based
local optimal clustering approaches (such as, k-Means). Second, for every cluster this para-
digm provides a representative object. This fact is worthwhile, since clustering algorithms,
as we have discussed earlier, are sometimes used to obtain representative objects from a col-
lection of objects. Third, it supports overlapping clusters in a very natural way. Overlapping
clustering is appealing in many domains [17]. For example, in information retrieval, docu-
ments are generally labeled as multi-topic; in social networks [23], a person may belong to
multiple communities; in gene classification, one gene can be associated with many different
functionalities, and so on. Fourthly, this clustering paradigm can easily be adapted to work
in a dynamic setting, where new objects are added in or existing objects are removed from
present clusters; which is, again, a very desirable feature in highly dynamic environments,
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like newsgroups and blogs. Finally, it supports semi-supervised classification; one needs to
provide the labels of the representative objects in the supervision step from which the labels
of the rest are automatically inferred. However, the number of representatives should be as
small as possible, since the supervision cost increases with the number of labeled examples.
Existing clustering approaches can only achieve a strict subset of the above benefits. For
instance, the popular k-Means algorithm can find representatives, but it requires the k value
as an input. Hierarchical clustering (HC) does not return representatives, but it works without
ak value. In fact, HC generates a hierarchical tree, which denotes clustering at different levels
of the hierarchy, so the choice of k can be made afterward. However, none of these algorithms
supports overlapping clustering, neither do they work for dynamic clustering in their standard
setting. In terms of time complexity, k-Means is linear (with respect to the number of objects)
only for vector-based data. For non-vector data, like sets and graphs, the k-Medoids variant
needs to be employed, which has a quadratic time complexity [24]. Complexity of HC is also
at least quadratic. The lower bound similarity clustering proposed in this research computes
the entire similarity matrix; thus, in the worst case it requires quadratic time. However, the
complexity of the similarity computation can be substantially reduced by adopting recently
proposed techniques [8].

1.1 Contribution

We prove that the optimization problem of clustering with lower bound on similarity is
NP-Hard and propose a greedy solution, named SimClus, that achieves a O (log n) approxi-
mation bound (n is the size of the object-set). We also show that this bound for the existing
best algorithm (star clustering) is as worse as O (n). We then propose a variant of SimClus
that is suitable for clustering in a dynamic setting. We experiment with different synthetic and
real-world data sets; like, random graphs, newsgroup document-set, and e-commerce query
data set. In all experiments, SimClus achieves similar or better clustering performance in
comparison with star clustering algorithm with more than 40% fewer representatives. It also
outperforms traditional clustering algorithms (k-Medoids, HC) in terms of cluster quality
and execution time.

2 Background

Consider, a set of objects, O and a similarity function, sim : O x O — [0, 1], such that
forany x € O : sim(x,x) = 1. The objective is to cluster the objects in O such that the
objects in a cluster are at least S-similar for a user defined 8 € [0, 1] with minimum number
of clusters.

The above formulation leads to an interesting graph problem. To see this, consider,
G(V, E) to be a graph whose vertices are the objects to be clustered. An edge e(u, v) € E
implies that the similarity between vertex u and v is at least § i.e., sim(u, v) > B. In further
discussion, we will call this graph the B-similarity graph or similarity graph when the value
of B is not important in the context of the discussion. Now, any clique in this graph can be
taken as one cluster in some clustering, since the distances between the elements in this clique
satisfy the required pair-wise similarity constraints. The clustering objective then becomes
to cover the entire graph G by a minimum number of cliques. Here, covering stands for the
fact that the union of vertices belonging to these cliques is equal to the vertex-set V of the
graph G. However, this formulation of clustering is difficult to solve; in fact, it leads to an
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NP-Complete problem, named covering a graph by cliques, which cannot be approximated
in polynomial time [30].

A relaxation of the above problem can be obtained which requires the similarity bound
(B) to hold only between the cluster elements and a fixed center object belonging to that
cluster. The center object is the representative for the corresponding cluster. Thus if a cluster
has m elements, out of all (';) similarities, m — 1 are guaranteed to be greater than or equal
to B. Nevertheless, all the m objects in the cluster are sufficiently similar due to triangular
inequality or other form of transitive bounds. The diameter of a cluster in the similarity graph
is at most 2. We call it lower bound similarity clustering (LBSC), which is the main focus of
this paper.

LBSC seeks exactly one cluster center (representative object) for every cluster. Thus, a
center object ¢ together with all the objects s such that sim(c, s) > g, form a cluster. The
set of objects, s that satisfy the above inequality are called B-similar objects with respect to
the object c. If s is B-similar to multiple centers, it belongs to multiple clusters. Thus, this
model naturally supports overlapping clusters. Since every object s belongs to at least one
cluster, s is B-similar to at least one representative object, say c. In that case, we say that
¢ covers s. In the worst case, s can cover itself by being its own representative. Thus, the
clustering objective is to cover all the objects with the smallest number of center objects. A
center always covers itself.

Unfortunately, the optimization task of LBSC is also NP-Hard. To prove this, we can
reduce the vertex dominating set (a known NP-Complete problem) to the decision version
of this problem. A vertex dominating set in a graph is defined as a set of vertices such that
every vertex of the graph is either a member of this set or is adjacent to a member of this set.
Now the following lemma holds.

Lemma 1 For a given collection of objects O, and a user-defined similarity threshold
B, to determine whether there exists a set of representative objects, C € O, of size k is
NP-Complete.

Proof We can reduce the vertex dominating set problem (known NP-Complete problem [15])
to this problem. For a given graph G(V, E), assume that each vertex v € V represents an
object in O. For every edge (v1, v2) € E, we consider that the similarity between the corre-
sponding objects is at least B, i. e., v; is a cover for v, and vice-versa. Now, there exists a
dominating set, R of size k or less in G, if and only if, we have a center set, C, of size k or
less such that all the non-center objects are covered by at least one center. It is so, because for
any v ¢ R, there exists u € R adjacent to it, Similarly, since every object g € O\C belongs
to some cluster, there exists a cluster center p € C such that sim(p, g) > B. Thus, every
object in O is either in the center set or is covered by at least one cluster center. Hence, the
Lemma is proved. O

The above relation to the dominating set problem suggests a graph-based formulation.
From (g) similarity values for a set of n objects, we can first construct a -similarity graph.
Then, in this graph, we need to find a vertex dominating set, which would constitute the
representative set of the desired clustering. Figure 1a shows a S-similarity graph of a set
of objects for some S. Figure 1b shows a LBSC clustering of these objects with 3 clusters.
Each cluster is marked with a dotted closed curve and the representative objects are marked
with gray color. Also note that the clusters are overlapping as objects 3, 4, and 5 belong to

multiple clusters.

@ Springer



SimClus: an effective algorithm for clustering with a lower bound on similarity 669

Fig. 1 An example of overlapping clustering with lower bound similarity. a A B-similar graphical represen-
tation of a set of objects. b A minimum distance threshold clustering

In further discussion, objects may be referred to as vertex or node in a S-similarity graph
in relation to this graph-based formulation. Similarly, the member of cluster representatives
may also be referred to as dominating set, center-nodes, or cluster-centers.

Star clustering: Aslam et al. [2] solved the above clustering formulation by a greedy algo-
rithm, named star clustering. The greedy algorithm works as follows. It sorts the vertices in
descending order of their degrees; it then selects the first vertex in the sorted order as one of
the cluster centers. Any other vertex covered by this one is deleted from the sorted list, and
the procedure is repeated until all the vertices are covered. If the similarity matrix is provided
and cost associated with its loading and storing is ignored, the runtime complexity of this
algorithmis O(|V|.1g|V) to perform the sorting. The clusters in Fig. 1(b) are obtained using
the star clustering algorithm.

Limitations of star algorithm: The greedy solution that the star algorithm provides is obvi-
ously not optimal. In fact, the approximation bound can be very bad. To show that, we first
prove the following Lemma regarding the solution obtained by the star algorithm.

Lemma 2 The greedy star clustering algorithm always generates an independent dominat-
ing set.

Proof To observe this, note that once it selects an object as a center-node, it considers all
its adjacent vertices to be covered and removes those from the sorted list. Hence, in later
iterations they never appear in the dominating set. So, the result-set returned by the algorithm
is an independent set.! O

Note that, the independent set restriction is the main reason for the greedy algorithm to
obtain a poor clustering with unnecessarily many star-centers. In Fig. 2, we show an example
that illustrates the poor bound of the star clustering algorithm. Instead of choosing {2, 8} as
center-nodes, star algorithm chooses {1, 3, 4, 5, 8}, to respect the independence set condi-
tion. This example can be generalized to obtain a bound in an asymptotic sense. Assume, we
have n vertices arranged in two star-shapes (as in Fig. 2, each with 7 — 1 satellites and one
star-center, where the star-centers in two star-shapes are adjacent to each other. In this case,
the star algorithm would require 5 centers, whereas the optimal LBSC would have only 2
centers; thus, the approximation ratio can be as bad as O (n).

The independent set formulation has several further consequences on the quality of rep-
resentative set obtained by the star algorithm. In fact, the objects that it chooses as cluster
centers are, in many cases, not really the true representative objects. For instance in Fig. 2,

L' An independent set is a set of vertices in a graph such that no pair of vertices in this set are adjacent.
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Fig. 2 Poor approximation
bound of stzar clustering
algorithm, it chooses 5 objects
(double-lined) as cluster-centers,
but the optimal cluster-center has
size 2 (gray color)

the object 2 and 8 are the best representative objects, but the star algorithm chooses 5 repre-
sentative objects, out of which 4 represent (overlapping) clusters with only two elements.

3 The SimClus formulation

In this research, we propose a set cover formulation, named SimClus for LBSC. It is also
greedy in nature, but with a better (O (log n)) bound. So, generally it produces fewer cluster
centers. Moreover, it produces better representative objects for each cluster.

First, we present the following Lemma that proves the connection of lower bound simi-
larity clustering with the set cover problem [27].

Lemma 3 LBSC can be reduced to a set cover problem, where the number of cluster-centers
is equal to the size of the selected set.

Proof Letus assume that G(V, E) is the similarity graph of LBSC, where every vertex repre-
sents one object in O. So, |V | = |O| and there is a one-to-one correspondence (f : V — O)
between the vertex-set and the object-set. Now we reduce the LBSC problem to an instance
of set-cover problem in polynomial time as below:

For each vertex u € V, we construct an object set s, = f(u) U{f(v) : v € adj(u)},
where adj (u) is the set of vertices adjacent to u in G. Let S = {s, : u € V}. Obviously,
|S| = |V and there exists a one-to-one correspondence between the elements in S and the
vertices in V. Now, an optimal solution to the set cover problem that chooses the minimum
number of elements from S to cover all objects in O can be used to obtain an optimal solution
to LBSC as follows. Assume 7 C S is the optimal set cover and C is the cluster-centers of
LBSC, which is initially empty. Now, for each s, € 7, we insert the corresponding vertex
x € V in C. Now, the minimality of | 7’| ensures the minimality of |C|. Thus, C is an optimal
solution for the LBSC problem and also, |C| = |7]. O

The set-cover problem is NP-Complete, but it can be solved using an efficient greedy algo-
rithm that achieves a O (logn) approximation bound [27]. The greedy heuristic iteratively
chooses the set that covers the largest number of uncovered elements until all the elements
are covered. We use the above greedy algorithm to solve LBSC after reducing it to the set
cover as described in the above proof. Thus, our algorithm solves LBSC with a O (logn)
approximation bound that yields much fewer representatives. In the experimental section,
we validate this claim using synthetic and real-life data sets.

For the dominating set problem, the hardness of approximation result is also available,
which proves that unless P = N P, no polynomial time algorithm can have better than
O (logn) approximation for this problem [22]. So, it is highly unlikely that a better bound
over log n can be achieved for LBSC, using a polynomial algorithm.
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SimClusClustering(G, n):
1. covered(l:n)=0,C=10
2. uncov_cover_set(o) = {oUadj(0)},Yo=1...n
3. while 3k such that covered(k) ==
4. Find the set P with object ¢, where i ¢ C
and size(uncov_cover_set(i)) is the largest
Find the set Q C P, where degree(i) is the largest
forie Q
select s arbitrarily form Q
covered(s) = covered(s) + 1
C=CUs
. for each y € adj(s)
0. covered(y) = covered(y) + 1
1.  update uncov_cover_set(o), Vo € adj(x),
where € uncov_cover_set(s))

o

12. return C

Fig. 3 Pseudo-code for SimClus: clustering with lower bound on similarity using greedy set cover

The main difference between star clustering and SimClus is that instead of choosing the

uncovered object with the highest degree, the latter chooses the object that can cover the
most uncovered elements. This drastically reduces the number of clusters. Thus, the clusters
are more dense and hence, more informative.
Implementation details: The algorithm implementation follows the reduction that is proved
in Lemma 3. At the beginning, all the objects are not covered and the center-set is empty.
We then map each vertex, u, of LBSC similarity graph to a set s, that contains itself and
all objects that it can cover. To facilitate the greedy heuristic, the set s, Vu € V contains
only those objects that are uncovered. So, we name the set s, as uncovered cover-set of u,
which intuitively means that it holds those objects that are uncovered and can be covered by
choosing u as a center. Hence, once an object is chosen as a center, the uncovered cover-set
of all the non-center objects are updated by removing any object that is covered by the newly
chosen center. In every iteration, a new center is selected using the above greedy criterion and
the process is repeated until all the objects are covered. If there is a tie in the above criterion,
we break the tie by selecting the object that has the largest degree in the similarity graph. If
there is still a tie, we break it arbitrarily.

The pseudo-code for SimClus is provided in Fig. 3. It accepts a S-similarity graph G and

returns the cluster-centers C. The covered vector counts the coverage of each object. The
coverage of an object is the number of centers to which it is adjacent. A correct clustering
requires that every existing object has the coverage strictly greater than zero. At initialization,
the covered vector is 0 and thus each object is noted as uncovered and the cluster-center set
C is empty (line 1). The uncovered cover-set of every vertex in initialized in line 2. As more
objects are chosen as cluster-centers, these sets are updated in line 11. The main loop (line
3) of the algorithm selects one object to be a new center according to the greedy criterion
and terminates when all the objects are covered.
Example: Consider the similarity graph in Fig. 2. The uncovered cover-set of vertex 1 is
{1, 2}; for vertex 2, itis {1, 2, 3, 4, 5, 8}, and for vertex 8 itis {2, 6, 7, 8, 9, 10}. At the begin-
ning, the uncovered cover-set of both the vertices 2 and 8 are the highest with the same size.
They also have equal degrees. So, we arbitrarily choose, say vertex 2, as a center. After updat-
ing the uncovered cover-set for all the objects, we have empty uncovered cover-set for 1,3,4
and 5 and only one object for 6,7,9 and 10. But, for object 8, uncovered cover-set contains
{6,7,9, 10}. So, 8 is selected as the next center. At this point, all the objects are covered, and
the algorithm terminates by returning {2, 8} as representatives.
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Complexity analysis: SimClus computes the entire similarity matrix to find the S-similarity
graph. So, the overall complexity of the algorithm is at least O(|V |2). If we consider that
the similarity matrix is given, then the overall worst-case complexity can be computed in
terms of the number of the centers obtained. Assume that the final clustering has k centers.
Then the outer while loop (line 3) runs for k times. In each iteration, the best center can be
obtained in O (Ig|V|) time by using a max_heap data structure. The cover-set update affects
only those vertices that are adjacent to the newly covered objects. For the sake of worse
case analysis, if we assume that to be O(|V|), the worst case complexity of the algorithm is
O(k.AglVI+ VD) = OKk|V]).

4 Dynamic SimClus algorithm

The static algorithm that is provided in the previous section requires that the entire §-similar-
ity graph is available before the algorithm is applied. However, in many practical application
scenarios, this requirement does not hold. For information retrieval, new documents can be
added or old documents may be deleted from the repositories and the clustering may need to
be updated. One option is to obviously re-cluster the objects by running the static clustering
algorithm for every change in the collection. But, for most of the cases, the changes are
only local; so re-computing the entire clustering is wasteful. Also note that re-computation
dramatically changes the cluster-centers; so, if the objective of LBSC is to find representative
objects in a dynamic setting, one may prefer the dynamic algorithm over the static algorithm,
since the former retains a large portion of the representative set. It is also useful in adopting a
lazy update scheme where a static re-clustering is applied intermittently after a fixed number
of dynamic updates.

We like to clarify one subtle point regarding the dynamic model in the above paragraph.
This model is not the same as the on-line model that is studied in theoretical computer sci-
ence. In the on-line model, the decision that is made based on present information cannot be
altered later when further information is available in the future. So in such setting, if a node
is made representative, its status cannot be changed later. Nevertheless, an on-line version of
LBSC is very difficult; in fact, the competitive ratio of it is as worse as O (n — 1) [19]. The
dynamic model that we propose makes local changes on the status of a node (whether it is
a representative or not). These changes are much cheaper compared to a total re-clustering
which make the dynamic version more appealing for cluster updates. But, they are based on
heuristics, so we do not expect a dynamic SimClus algorithm to satisty the O (lgn) approxi-
mate guaranty that exists for the static SimClus (through the set cover formulation) regarding
the number of clusters (representative objects). So, it may be worthwhile to perform a static
update after a batch of dynamic updates to re-optimize the clustering.

In a dynamic environment, we assume that we have a solution for a lower bound similarity
clustering. New requests for insertion or deletion of an object come in an arbitrary manner.
We need to satisfy the requests efficiently while maintaining the minimality of representative
set as much as possible. We are allowed to change the status of an object in either direction
(a center can be made non-center and vice-versa).

Given the above scenario, the addition of new objects cannot be made based on the greedy
criteria of the static algorithm presented in Fig. 3, as only one object (the new object) is
uncovered and all vertices adjacent to that object have exactly the same size (one) for the
uncovered cover-set. So, we propose to obtain cluster-centers in such way that the following
three conditions are satisfied.
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Insert(G, covered(1 : n),v):
G stores the similarity graph with adj data;
covered stores coverage count of each object;
v is the id of the new object to be inserted

add v to G, update covered(v)
if covered(v) > 0 /* already covered */
MakeCenterIfHaslllegalNeighbors(v)
if (is_center(v)) == false)
MakeCenterIfHasHigherDegree(v)
else /*v is NOT covered */
forall z € adj(v)
MakeCenterIfHasIllegalNeighbors(z);
if covered(v) == 0 /*still not covered */
0. HighestDegreeGetsCenter(v)

e R R el

MakeCenterIfHasIllegalNeighbors(v)
1. forall z € adj(v)

2. MakeNonCenterIfIllegal(x)

3. if (center-removed == true )

4 MakeCenterAndUpdate(v)

Fig. 4 Dynamic insert algorithm

1. Every object is either a cluster-center or is adjacent to at least one cluster center.
A cluster center with degree > 0 must be adjacent to at least one non-center object of
smaller or equal degree.

3. No cluster-center is redundant, i.e., every cluster-center covers at least one object
exclusively.

Note that the first of the above conditions is from the definition of LBSC. However, the
second and the third conditions are chosen for LBSC to have a reasonably good solution in a
dynamic setting. In the experimental section, we shall show that the above dynamic algorithm
generates less centers in comparison with both static and dynamic star clustering algorithm.

4.1 Inserting a new object

We first define some terms before describing our insert algorithm. A center is called illegal it
it does not satisfy condition (2) above, i.e., all its adjacent vertices have degree strictly higher
than it. A center is called redundant, if its removal does not change (increase) the number of
nodes that need to be covered.

Figure 4 shows the pseudo-code to insert a new vertex v. It also accepts the similarity
graph and the covered vector as parameters; the latter stores the current coverage of each
existing vertex. Once a new object v is added, the adjacency list of similarity graph G is
updated. If v is adjacent to any existing center, it is properly reflected in the covered vector
(line 1). Now, we have two different cases to consider.

In the first case, when v is covered, condition 1 is already satisfied. Then, we check condi-
tion 2 (illegal center) for all the centers that are adjacent to v. Note that, since the addition of
new vertices changes the adjacency list of some of the existing vertices, this may change one
legal center to illegal. If this check succeeds (some illegal neighboring center is found), we
make the illegal center as non-center and v becomes a center. The above step is performed
by the subroutine on line 3 and it is called recursively on success (in line 5 of Fig. 5). In
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MakeCenterAndUpdate(v):

1. forall z € adj(v)

2 if (is_center(z))

3. RemoveCenterIfRedundant(x)

4 else

5 MakeCenterIfHasIllegalNeighbors(x)

Fig. 5 Make center routine

Delete(G, covered(1 : n),v):
G stores the similarity graph with adj data
covered stores coverage count of each object
v is the id of the existing object to be deleted

delete v to G, update covered(v)
if was_center(v) /* was a center before deletion */
forall = € adj(v)
if (degree(x)) == 0)
MakeCenter(x)
else if covered(z) == 0
HighestDegreeGetsCenter(z);
else /* v was not a center before deletion*/
forall x € adj(v)
10. if is_center(x)
11. RemoveCenterIfRedundant(x)
12. else
13. forall y € adj(v)
14. MakeCenterIfHaslllegalNeighbors(y)

© NSO 0N

Fig. 6 Dynamic delete algorithm

case the above step fails (v is not a center yet), we test whether v should be a center as it has
strictly higher degree than any of its neighboring centers (using subroutine on line 5). Note
that this step is not essential for correctness according to our conditions, but this heuristic has
potential to generate better centers. For the second case, when v is not covered, then none of
its adjacent vertices is a center and to fulfil the coverage requirements, at least one of these
vertices should be a center. We first test whether it should be some x € adj (v) by checking
whether it has any illegal neighbors. If not, then we choose the vertex with the highest degree
as a center (using subroutine on line 10). The body of one of the subroutines is also shown,
and the other two subroutines are very straightforward (not shown).

When a node is made a center, some auxiliary updates are required which is shown in
Fig. 5. First, redundancy check is required for all other centers that are adjacent to it to satisfy
the condition 3. Moreover, some adjacent non-centers can also become a center as one of
its neighboring center becomes illegal. Figure 7 shows an example of insertion, where we
explain the steps of the insertion algorithm.

4.2 Deleting an existing object
Deletion is comparably easier. Like insertion, we first update the adjacency and covered

vector as necessary. Then, we consider the following two cases. The first is, when the deleted
node v was a center. In that case, we first need to check if any of its adjacent vertex becomes
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Fig. 7 Insertion example; a (a)

: X (b)
diamond shape indicates a center. —‘ ‘@

&

a After inserting node 8, node 3 //
is illegal center. b Node 3 s ’
becomes non-center and node 8 e

becomes a center; now, node 4, a

center-neighbor of 8 is redundant.

¢ Redundant center removed; a < : >

non-center neighbor (of 8), 1, has e 0 @ e
an illegal center 2 as neighbor.

d Final result; an offline (©) (d)
algorithm will produce identical ’» _@ e
result in this case e
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Fig. 8 Deletion example; a diamond shape indicates a center. a Node 8, a center node, is to be deleted. After
deletion, the node 3, an isolated node, will be a center by default; node 4 is yet to be covered. b Node 8 is
deleted, node 3 became a center. To cover node 4, one more center is required to be elected. The highest degree
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isolated. All of those become a center. For the remaining, if they are still covered, we return
immediately. Assume x is not covered, then we cover x by making the highest degree vertex
(among itself and its neighbors) a center. Figure 8 shows a deletion example to explain these
steps. For the second case, when v was not a center, its removal does not violate condition
(1), so we check for condition (2) and (3) by calling the same methods as in insert routine.
The pseudo-code is provided in Fig. 6.

4.2.1 Complexity analysis

Complexity of dynamic SimClus is difficult to analyze, since it depends on the degree of
the vertices that are adjacent to the inserted (or deleted) vertex. For the sake of average-case
analysis, we assume Erdos-Renyi random graph model, where the (expected) degree of a
node is equal to d = p.|V]|; p is the probability of an edge to exist. The following analysis
is made based on this d value.

The redundancy checking of a node takes O(d) time as it just reads the covered array
of its adjacent nodes. Similarly, the illegal center condition checking of one node also takes
O (d) time, as it reads the degree of the adjacent nodes. So, considering the above check for
all the nodes adjacent to the inserted (deleted) node, the total cost is O (d%). But, the Make-
CenterIfHaslIllegalNeighbors subroutine is called recursively on success. If the recursion
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is successful for I times, the total cost is O (Id?). But, generally the value of I is very close
to 1 as we shall prove below.

By definition, an illegal center has the smallest degree than all its neighbors. Assume u
is a node, deg(u) is its degree and adj (u) is its adjacency list. The probability that u is an
illegal node is:

n—2

= > PIVveadj(u):degv) > i+1|deg(u) =il
i=1
n—2 )

= > (Pldeg(v) =i+ 1|v € adj@)]) - P[deg(u) = i]
i=1

n— n—2 i
—1\ . )
= E (E ( )pk(l —p)”"z) -(”l_ )p’(l—p)"*’*l

The probability that the node u has degree i is equal to ("l_ 1) pi (1-— p)"’i ~land the proba-
bility thatanode v € ad;j (1) has degree greater than i is equal to ZZ;IZ (”;2) pr(l — pyrk-2,
For a node to be illegal, all its neighbors should have degree greater than its degree. Thus, if
u has degree i, its probability to be illegal is equal to the argument of the outer sum of the last
line of the above set of equations. Since an illegal node can have degree from 1 to n — 2, the
outer sum aggregates these probabilities. If the above probability is p;epeqr, Using geometric
distribution, the average value of 1 is 1= p . For all possible values of p, the value for [ is
less than 2 (found with direct calculation i in Matlab) when n > 10. For example, the highest
value of I from n = 10 is around 1.75 and for n = 1000, it is around 1.015 and with larger
n, the value diminishes further.

Intuitively, it means that for random graphs, every node is generally connected to some
vertices with higher and some vertices with lower degrees than its degree; hence, very few
nodes are illegal. For real-life graphs, the constant may be a bit higher. So, considering [ a
constant, the complexity of dynamic algorithm for one insertion or deletion is O (d?).

5 Experiments

The objective of the experiments is to show the following. First, the SimClus clustering
returns a smaller number of representatives for LBSC, yet it yields similar quality clustering.
Second, the representative objects are of good quality and can generate clustering that is bet-
ter than the traditional clustering algorithms. Finally, that the LBSC approach is particularly
suitable for clustering multi-label data sets. We also include some results from a real-life
e-commerce data set.

Besides SimClus and star, the experiments use two other traditional clustering algorithms:
k-Medoids, and UPGMA (Unweighted Pair Group Method with Arithmetic Mean) which is
a hierarchical clustering approach. For all the algorithms, the document similarity is modeled
by using cosine similarity and a similarity matrix is provided as input. For k-Medoids, we use
our own implementation which works very similar to k-Means, but in each iteration, when
k-Means chooses a new center by averaging the vectors in that cluster, k-Medoid chooses it
by finding the object with the best average similarity to all the objects in that cluster (thus, it
has a quadratic time complexity). For the UPGMA hierarchical clustering algorithm, we use
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Table 1 Performance on random graphs

Vertex Edge Number of clusters
SimClus Star
Static Dynamic Static Dynamic

Erdos-Renyi random graphs

1000 5000 144 194 209 209
1000 10000 84 123 126 130
1000 100000 16 22 21 24
10000 50000 1424 1951 2066 2068
10000 100000 840 1227 1323 1311
10000 1000000 147 225 247 245
Power law graphs

1000 5000 547 564 579 579
1000 10000 525 539 550 549
1000 100000 496 502 502 503
10000 50000 3285 3498 4015 4024
10000 100000 2734 2928 3340 3340
10000 1000000 1991 2094 2156 2156

the implementation available in the Cluto Package.” The star algorithm was implemented by
following the pseudo-code provided in the paper [2].

5.1 Synthetic data: random graphs

The first experiment considers synthetic data, in the form of random similarity graph of var-
ious sizes and types for both static and dynamic scenario. For the dynamic experiments, we
shuffle the vertices of the similarity graphs randomly and insert them in the existing graph
(staring from an empty graph) in that order. With a small probability (.05), we also delete a
random vertex after every insertion. For random graph type, we consider the following two
model: (1) Erdos-Renyi model and (2) Power-law graph model.

The result is shown in Table 1 for these two models. For both static and dynamic versions,
SimClus achieves better optimization (smaller number of clusters) in comparison with Star
clustering algorithm. Specifically, the static version significantly outperforms the static (and
dynamic) version of star clustering. As expected, our dynamic version cannot perform as
good as our static version, yet it performs better than the star clustering algorithm.

5.2 Newsgroup data set

For real-life data set, we chose the Twenty-newsgroup data set from the UCI Machine Learn-
ing Repository (http://www.ics.uci.edu/~mlearn). This data set is interesting for our experi-
ments, as it has a set of documents that have multiple labels. We used the rainbow package?
to convert the documents into word vectors and then used the best 100 words (in terms of

2 http://glaros.dtc.umn.edu/gkhome/views/cluto/index.html.

3 http://www.cs.cmu.edu/~mccallum/bow.
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mutual information gain statistics) as feature vectors of those documents. We discarded any
document that did not have any of the top 100 words. The final data set had 16701 documents.
Out of them, 16199 had a unique label. 497 documents had 2 labels; only 5 documents had
more than 2 labels; and, as the name suggests there are 20 different labels, in total.

In this experiment, we cluster the documents using different clustering algorithms and
compare the clustering performance using supervised performance metrics, like precision,
recall and F-measure. For k-Medoids and Hierarchical (UPGMA), we set the k value to be
20 to obtain 20 different clusters; then for every cluster, we use majority votes to label the
cluster. For any object with & labels, 1/k vote is counted for all its labels. In case of SimClus
and star algorithm, we cannot use k, so we cluster the documents for different similarity
thresholds. Number of clusters are generally higher than 20 (exact values are shown in the k
column). As the similarity threshold increases, the number of clusters also increases. Then
we classify each of these clusters with the label of the cluster representative. Note that,
many representatives (thus many clusters) can have same class-label; all of those clusters
are collectively classified with that label. If the representative object has multiple labels, all
the objects adjacent to that representative object get multiple labels. An object can also get
multiple labels by being adjacent to multiple representatives with different class-labels.

We use both macro and micro measures for computing the supervised performance metric
values like precision and recall. Macro measures are pivoted on the classes. So, a separate
contingency table (actual vs predicted) is computed for each class. Then, the precision and
recall value of each class are averaged to find the final metric values. On the other hand,
micro measures are povited on the objects, so an aggregated contingency table is created
from which the metrics are computed. While computing the values of different cells of the
contingency tables, we treat each object uniformly. Thus, for an object with k different actual
(or predicted) labels, its contribution to the appropriate cell is recorded as 1/k so that the
aggregated contribution for different labels sums to 1.

Table 2 shows the results. Compared to k-Medoids and Hierarchical, both star and
SimClus achieve much better performance in the F-score measure. It is mainly because
of the very high recall that the latter algorithms achieve. The possible reason is that, instead
of choosing exactly 20 centers (which may not be enough for the data set, since the cluster
boundary is not regular), our algorithm samples enough representatives to cover the entire
cluster. So, a document has much higher chance to be a neighbor of one of the many centers
that matches with its class label. For example, if a document has a label “comp.graphics”,
out of, say 500 representatives, roughly 500/20 = 25 representatives may have a label
“comp.graphics”. So, the document has a much higher probability to be a neighbor of any of
these. One may expect a similar improvement in the performance of a k-Medoid or a hierar-
chical algorithm by applying a larger k value than the known number of classes (which is 20
for this data set). But, there exist two challenges. First, it requires to design a cluster-merging
algorithm to obtain the desired number of clusters (20 for this data set) at the end. Second,
it may be difficult to choose a suitable value of k.

In comparison between star and SimClus, their F-values are similar. However, SimClus
chooses 30—40% less centers compared to the star algorithm. We mentioned earlier that the
number of the representatives is significant in representative-based classification, as the labels
of the representatives need to be manually evaluated, which is always costly.

Also note that for both star and SimClus, as the § value increases, the classification per-
formance increases. It is because with a higher 8 value, there are more centers and more
information is available to the algorithms as the labels of those centers. This also shows an
application of LBSC clustering model as an active classification algorithm, where the labels
of the objects are sought as needed to perform the classification through clustering. If more
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Table 2 Comparison on newsgroup dataset

Algorithm Parameters Micro Macro
B k Precision  Recall =~ F-Measure  Precision  Recall =~ F-Measure
k-Medoids ~ — 20 59.8 40.2 48.1 59.8 40.2 48.1
UPGMA - 20 484 37.3 42.1 484 373 42.1
Star 0.50 125 36.5 94.5 52.7 39.1 94.4 553
0.55 183 39.5 94.5 55.7 42.1 94.3 58.2
0.60 273 45.0 95.0 61.0 45.7 94.8 61.7
0.65 432 51.9 95.9 67.3 52.6 95.7 67.9
0.70 668 59.8 96.6 73.9 60.5 96.5 74.3
0.75 1060 67.6 96.8 79.6 67.9 96.7 79.8
0.80 1811 77.1 97.3 86.1 717.1 97.2 86.0
SimClus 0.50 75 37.6 93.3 53.6 40.8 92.9 56.7
0.55 106 40.7 92.8 56.6 42.4 92.6 58.1
0.60 147 45.0 92.8 60.6 48.0 92.6 63.3
0.65 229 50.7 92.4 65.5 52.3 92.1 66.7
0.70 391 54.7 93.1 68.9 55.9 92.9 69.8
0.75 699 64.0 95.0 76.4 64.9 94.8 77.1
0.80 1274 70.5 96.1 81.4 70.5 96.0 81.3

information is available, better classification can be achieved. In case of clustering, choosing
higher value does not yield better clustering as with higher value it can happen that a desired
cluster can be fragmented. So, if a size (number of clusters) insensitive performance metric
is available for the clustering, one should try to find the optimal value of 8 that would yield
the best clustering. If the metric function is convex, a binary search can be performed to find
the global optimal value of beta. Also one can choose to use comparably large beta value to
find many clusters and then merge them based on pairwise similarity of the original clusters
to obtain the final clustering. This is a very effective approach as shown in [10,16,25].

Our third set of experiments compares the ability of SimClus and star to predict multiple
labels on the newsgroup data set. For this, we find the predicted labels of the objects that
has more than one actual labels (502 documents qualify). An actual multi-label is considered
as recalled, if at least two predicted labels match with two of the actual labels. We name
the recall measure that is computed in this way as multi-recall. Table 3 shows the result for
three different values of similarity threshold. In this table, we compare the number of centers
and the multi-recall values between SimClus and star algorithm. The recall values for both
the algorithms drop with increasing threshold values. The reason behind that is with large
threshold, B-similarity graphs become more and more sparse, so an object is not connected
to many representatives. Thus, its ability to predict multiple levels diminishes. In comparison
with star, SimClus performs substantially better than star for a 8 value of 0.60 even with
47% less centers. As § increases, it loses to star, mainly because it optimizes the number of
centers. In fact, as we investigated we found that star achieved better multi-recall, by actually
selecting many of the multi-labeled nodes as the center objects.

We also compare the timing performance of our algorithm in comparison with other algo-
rithms. The result is shown in Table 4. The table only shows the execution time (in seconds)
of the clustering task; the I/O cost of loading the similarity matrix is excluded for the sake of
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Table 3 Overlapping clustering performance

Similarity threshold () SimClus Star
Centers count Multi-recall Centers Multi-recall
0.60 144 76.49 273 48.41
0.70 382 41.63 550 45.80
0.80 1274 28.88 1811 31.47

Table 4 Execution time

comparison (time shown in Algorithm korp  Size
seconds) 4000 8000 12000 16701
k-Medoids 20 3336 301.21  1200.12  3100.38
UPGMA 20 6.71 33.48 75.76 216.96
RB 20 25.64  116.68 297.88 677.28
Star (static) 0.50 0.02 0.04 0.06 0.09
0.75 0.02 0.04 0.05 0.08
SimClus (static) 0.50 5.09 27.62 68.68 197.49
0.75 0.50 2.53 6.78 15.22

fair comparison. The time is reported for a 2.1 GHz machine with 2GB RAM with Linux OS.
For this experiment, we randomly select documents from the newsgroup data set to make 3
different smaller-size data sets (4000, 8000, 12000). Besides k-Medoids, and UPGMA, we
also use another algorithm, RB (from the Cluto software), which is a fast partitional algorithm
that uses repeated bisection. For k-Medoids, UPGMA and RB, which require a k value to
cluster, k = 20 is used as it is the natural clustering for the newsgroup data set. For star and
SimClus, timing for two different similarity thresholds (0.5 and 0.75) are reported. Different
threshold accounts for different number of edges in the S-similarity graphs.

From the Table, we see that star is the fastest among all the algorithms as it just needs to
sort the vertex-set only once based on their degree and its timing varies negligibly based on
the number of edges. SimClus came out to be the second best and its timing varies based
on the number of edges in the similarity graph since the time complexity has an |E| term.
The execution time of SimClus for 0.5 threshold (which is very relaxed for LBSC) with the
entire newsgroup data setis 1.1, 3.4, and 15.7 times better than UPGMA, RB, and k-Medoids,
respectively. We also compared the execution time of our dynamic algorithm to evaluate its
utility over the static algorithm. For the newsgroup data set, average insertion time of one
document is 0.13 second, which is much faster in comparison with the re-clustering time
(15.22 seconds) using the static algorithm.

5.3 eCommerce data set

For the final evaluation of LBSC clustering, we use a subset of the eCommerce data set that
is used in [26]. It includes approximately 7.9 million customer queries for product search
in eBay. To represent the similarity among the queries, a similarity graph is computed by
considering the textual similarity and user-session similarity. The first is just a similarity
metric based on the number of common words between a pair of queries, and the second
is based on the frequency with which the two queries co-occurred in a single user session
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from historical eBay data set. Using efficient word indexing, the similarity graph is computed
in almost linear time. For details on how the similarity is computed, see the original paper
[26]. The graph is very sparse; it contains approximately 20.6 millions edges. The edges are
weighted, with the weight values between (0, 1], average weight value is 0.13. The graph
shows power-law degree distribution.

Our objective in this research is to cluster the queries to find representative set of queries.
Clustering is in general useful to categorize the queries which can further be utilized to obtain
a catalog. But, for eBay, finding representative objects of the clusters has some other signif-
icant use cases, such as (1) related search recommendations, (2) finding fall-back queries if
the original query has null or very small result-set.

Since the data set is already in a graph format, the LBSC formulation is particularly suit-
able for this task. We run SimClus with 8 = 0.1, which yields about 650K representative
objects. The clustering task finished in approximately 3 days. As an alternative, we also tried
to cluster the data set with MCL graph clustering algorithm [12]. It took more than a week
on a hadoop-based cluster of 8 identical machines. It returned nearly a million clusters with
its default settings.

Since the number of clusters are different, it is difficult to compare between the quality
of the clusterings returned by SimClus and MCL by different graph-clustering metrics, like
average normalized cut, modularity, etc. But with a visual inspection, it seems that the results
are comparable. Most of the clusters are in the form of stars with small sizes except few
very large (and dense) clusters of size about 10 thousand. Such a result is expected as the
query graph has scale-free nature. So, there is a small set of very popular queries (like ipod,
antiques, nike) that have numerous similar queries that built the large clusters. On the other
hand, majority of the queries do not have many neighbors, thus forming a large number of
small clusters. However, SimClus is better than MCL, since it provides the representatives
instantly. Furthermore, it allows overlapping clustering which is very useful in this clustering
problem. For instance, a query like ipod battery nano is clustered in both nano ipod and in
ipod battery cluster using LBSC. But, MCL places it only in one cluster. A small snippet of
these clusters obtained from SimClus is shown in Fig. 9.

6 Related work

Lower bound similarity clustering did not get much attention in the past. star clustering [2] is
the leading algorithm in this paradigm. [14] highlighted some of the problems of star cluster-
ing algorithm and proposed an alternative solution to improve the star clustering; however,
they did not provide any approximation result that their algorithm achieves. Furthermore,
they considered only the static scenario. LBSC is naturally aligned with overlapping clusters.
For example, in a work regarding gene functional classification [16], the authors used a bound
on the kappa statistic as a similarity threshold to find all possible overlapping subset of genes
as initial clusters. From this initial clustering, any two clusters that have more than 50%
common objects were merged recursively. Authors showed that such an approach generates
much superior (biologically meaningful) clusters in comparison with k-Means, or hierar-
chical clustering. Note that in this clustering approach, the lower bound is applied between
every pair of objects. So, in a graphical representation, the initial clusters are just cliques.
In a seminal work on community finding [25], the authors used k-clique (k = 6) to obtain
initial overlapping clusters in a social network. Then, any two adjacent k-cliques (adjacent
k-clique’s share k — 1 vertices) were merged to obtain the final clustering. Both the above
clustering approaches are examples of finding overlapping clusters from similarity graph that
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Fig. 9 Part of two star clusters obtained using SimClus algorithm are shown; the centers are oval shaped,
only the edges between the center and the satellite nodes are shown
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was obtained by lower bounding some form of similarity measure. The initial clusters are
then merged to obtain the final clustering. Merging generates fewer clusters, but it loses the
representative objects. So, our approach is suitable if a representative object is desired.
Fuzzy clustering is one of the earliest approach that explicitly formulated the concept of
overlapping clustering. In this domain, Fuzzy c-Means [11] is the flagship clustering algo-
rithm. It is equivalent to soft k-Means algorithm obtained by applying EM to a mixture of
Gaussian models. Objects are assigned to a cluster in a similar way as in soft k-Means by
applying a threshold to the posterior probability obtained through soft k-Means. Recently,
probabilistic relation models were also applied to obtain overlapping clusters [7]. However,
model-based algorithms can fail if the data does not agree to the model’s assumption.
Obtaining representative objects through clustering is well studied in signal processing,
and also in theoretical computer science. In fact, the original k-Means clustering algorithm
was proposed by signal-processing community for vector quantization [21], which is used
for lossy data compression. The k-Medoids clustering is studied extensively in theoretical
computer science and optimization [6]. Most of the formulations work for a given k, and
their objective is to minimize the maximum distance from an object to its nearest center.
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In terms of dynamic clustering algorithms, [3] finds the online version of the popular
EM-based approach. [1] solve it by using an online component and an off-line component,
[4] proposed an online variant of a different mixture model clustering for text data. One may
consider streaming model as dynamic clustering; however, this model imposes very strict
requirements [5,20] on available memory and the number of passes over the data. Hence, the
approximation quality is generally poor.

7 Conclusions

In this paper, we proposed a clustering algorithm that uses lower bound on similarity to
cluster a set of objects from the similarity matrix. Experiments on real-life and synthetic data
sets show that the algorithm is faster and produces higher quality clustering in comparison
with existing popular algorithms. Furthermore, it provides representative centers for every
cluster; hence, it is effective in summarization or semi-supervised classification. It is also
suitable for multi-label or on-line clustering.
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