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ABSTRACT

In most complex evolving systems, we can often find a critical subset of the con-

stituents that can initiate a global change in the entire system. For example, in

complex networks, a critical subset of nodes can efficiently spread information, influ-

ence, or control dynamical processes over the entire network. Similarly, in nonlinear

dynamics, we can locate key variables, or find the necessary parameters, to reach

the attraction basin of a desired global state. In both cases, a fundamental goal is

finding the ability to efficiently control these systems.

We study two distinct complex systems in this dissertation, exploring these

topics. First, we analyze a population dynamics model describing interactions of

sex-structured population groups. Specifically, we analyze how a sex-linked genetic

trait’s ecological consequence (population survival or extinction) can be influenced

by the presence of sex-specific cultural mortality traits, motivated by the desire to

expand the theoretical understanding of the role of biased sex ratios in organisms.

We analyze dynamics within a single population group, as well as between

competing groups. We find that there is a finite range of sex ratio bias that can be

maintained in stable equilibrium by sex-specific mortalities. We also find that the

outcome of an invasion and the ensuing between-group competition depends not on

larger equilibrium group densities, but on the higher allocation of sex-ratio genes.

When we extend the model with diffusive dispersal, we find that a critical

patch size for achieving positive growth only exists if the population expands into an

empty environment. If a resident population is already present that can be exploited

by the invading group, then any small seed of invader can advance from rarity, in

the mean-field approximation, as long as the local competition dynamics favors the

invader’s survival.

Most spatial models assume initial populations with a uniform distribution

inside a finite patch; a simple, but not a cost-efficient approach. We show, using

a novel application of simulated annealing, that a specific, non-trivial shape of

spatial distribution can minimize the total cost of successful invasion, i.e., the cost

xv



of ecological restoration. Further, our approach can be generalized to essentially any

reaction-diffusion model with diffusive spreading.

In the second part of the dissertation we conduct an extensive study of minimum

dominating sets (MDS) in complex networks; particularly, in scale-free networks.

MDS is the smallest subset of nodes in a network that can reach every other node

as nearest neighbors, thus it provides a key subset of nodes that play critical role

in controllability and observability of social, biological, and technological networks.

Continued interest in network control, monitoring and influencing of complex networks

motivates our research of understanding the properties and practical application-

related issues of the MDS.

Our study of the scaling behavior reveals that the size of MDS always scales

linearly with network size, as long as the power-law degree exponent γ of the degree

distribution is larger than 2. However, when γ < 2, a domination transition occurs,

allowing the MDS size to become O(1), leading to easily dominated networks, under

certain structural conditions.

Motivated by practical applicability in large networks, we develop a new domi-

nating set selection method, derived from probabilistic node selection techniques,

which can select small dominating sets without complete network topology informa-

tion. We also show that the effectiveness of our method, as well as the effectiveness

of other heuristics of dominating set selection, strongly depends on the assortativity

of networks.

Finally, we conduct a numerical study to analyze the fraction of nodes that

remain dominated, after the network is damaged, and some nodes are removed. We

find that dominating sets optimized for small size are particularly vulnerable to

damage; a significant amount of “domination coverage” may be lost if key dominator

nodes are deleted. However, we also find that increasing the redundancy of dominating

sets by adding a few well-picked nodes can successfully increase the post-damage

dominated fraction of the network. Based on this idea, we develop two algorithms to

build dominating sets with flexible balance between size and damage resilience.

xvi



CHAPTER 1

INTRODUCTION

Invasion phenomena and finding critical subsets of a system that can initiate global

change are of significant interest in multiple areas across scientific disciplines. In

biology, a group of organisms arriving in a critical quantity can take over the habitat

of a resident population [1–3]. While competition dynamics governs invasion on a

local scale, it can also drive the evolution of genetic and cultural traits on larger time

scales. The classical analogue in statistical physics is the description of magnetism

using the Ising model [4], where a critical patch of uniformly parallel spins can spread

across the system, changing all spins to the same state.

Similarly, in complex networked systems, a critical subset of nodes can spread

information to all other nodes [5], observe the entire network [6], or drive dynamical

processes to a desired global state [7]. The existence of tipping points in spreading

dynamics on networks [8] can be interpreted as another form of critical behavior.

Indeed, finding these critical nodes is one of the main focuses of network science,

because they are essential in several problems, including prevention of the spread of

diseases in social networks [9], monitoring infrastructural networks [6], and gathering

or dispersing information efficiently [10,11].

Finding critical limits, either as critical thresholds of order parameters in

systems governed by nonlinear dynamics, or as the optimal subset of nodes in a

network, represent an underlying desire to find a way to efficiently control these

systems.

Portions of this chapter previously appeared as: F. Molnár Jr., C. Caragine, T. Caraco, and G.
Korniss, “Restoration Ecology: Two-Sex Dynamics and Cost Minimization,” PLoS One 8, e77332
(2013).

Portions of this chapter previously appeared as: F. Molnár Jr., S. Sreenivasan, B. K. Szymanski,
and G. Korniss, “Minimum Dominating Sets in Scale-Free Network Ensembles,” Sci. Rep. 3, 1736
(2013).

Portions of this chapter previously appeared as: F. Molnár Jr., N. Derzsy, É. Czabarka, L.
Székely, B. K. Szymanski, and G. Korniss, “Dominating Scale-Free Networks Using Generalized
Probabilistic Methods,” Sci. Rep. 4, 6308 (2014).

Portions of this chapter to appear as: F. Molnár Jr., N. Derzsy, B. K. Szymanski, and G.
Korniss, “Building Damage-Resilient Dominating Sets in Complex Networks against Random and
Targeted Attacks,” (under review).
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The study of critical phenomena in nonlinear dynamics and networks belongs

to complex systems analysis [12]. There is no single definition for a complex system,

however its defining qualities include that they are composed of multiple parts

(agents, nodes, dynamical variables, etc.), and the interactions between them give

rise to collective behavior and emergent phenomena, which cannot be explained

using a classical bottom-up approach (i.e., by understanding the constituent parts

individually without their interactions) [13].

The study of complex systems cuts across the boundaries of traditional scientific

disciplines. Mathematical descriptions and model solutions of one system are often

applicable to problems in other fields. For example, herding and flocking behavior

can be observed in organic as well as inorganic systems [14]; reaction-diffusion

models can describe animal coloration patterns [15] as well as chemical precipitation

patterns [16]; cellular automata models can describe the spreading of forest fire [17]

as well as diseases [18]; multi-scale stochastic models can describe climate [19] as

well as micromechanics [20]. Complex networks are, naturally, an integral part of

complex systems. Network theory has been successfully applied in several fields,

including statistical physics [21,22], biology [23–25] and economics [26].

In this dissertation we study two distinct topics of complex systems. The

first topic explores invasion dynamics and critical cluster behavior in the context

of a sex-structured population dynamics model, thus provides contributions to

theoretical ecology as well as statistical physics. Specifically, our study contributes a

theoretical exploration of how an extraordinary sex ratio’s ecological consequence,

population persistence or extinction, can be affected by interactions with a culturally

inherited mortality trait. Further, we contribute the notion of the critical initial

patch distribution, which ensures positive growth at minimum cost, with potential

generalizations to any reaction-diffusion system.

The second topic of this work provides a comprehensive research of dominating

sets in complex networks, with emphasis on scale-free networks. We contribute

empirical and graph-theoretical descriptions of the scaling behavior of the size of

minimum dominating sets (MDS). Further, we explore alternative methods for finding

MDS approximations based on probabilistic node selection. Finally, we propose new
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algorithms for building dominating sets that ensure maximal network domination,

even when the network suffers considerable damage.

1.1 Population Dynamics and Sex Ratio

Invasion phenomena, and the spreading of species in new environments, are of

significant interest in biological sciences. The uncontrolled spread of invasive species

can cause not only the disruption of an ecosystem, but also significant economic

losses. For example, zebra mussel (Dreissena polymorpha) accidentally introduced

to the Great Lakes now threatens water plants, boating and fishing [27]. Kudzu

(Pueraria montana), an invasive plant in southern United States causes significant

ecological damage by growing over native flora and blocking sunlight [28]. It has

been estimated that damages and control costs caused by invasive species exceed a

hundred billion dollars annually in the United States [29].

In other cases, invasion is the desired goal. Ecological restoration aims to

replenish an ecosystem’s biodiversity [30,31] by reintroducing species to their former

habitat. Success depends on both ecological and economic criteria [32]; ecosystem

managers must not only evaluate the impact of restoration on the target species, but

also the total cost of deploying the control agent [33].

Consider an example where restoration failed. Historical records indicate that

Canada lynx (Lynx canadensis) were found in New York State (NYS), but were seen

only rarely during most of the 20th century [34]. Between 1989 and 1992, no fewer

than 80 lynx were captured in Canada and released in the Adirondack Mountains

of NYS. Each animal carried a radio-collar, so that survival and dispersal could be

monitored. The lynx rapidly dispersed; mortality during dispersal was high. Lynx

population density grew too low for successful reproduction, and the species is now

considered extirpated in NYS [34].

Interest in controlling various species, by either preventing or promoting spread-

ing, motivates our research of invasion dynamics. However, there is much debate

in ecology on the modeling approach to take. We can either model one particular

species and attempt to capture its specific details and complexity of its interactions

with the environment, or we can build an abstract, strategic model from “general
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principles” [35]. Some argue that ecological models must be developed alongside data

and observations [36] in order to build quantitative and predictive models [36,37].

Computational models, such as cellular automata could capture complexity success-

fully [38]. On the other hand, simple, mean-field type models offer mathematical

tractability [39]; idealized models are successful in summarizing theoretical concepts

and providing conceptual frameworks for more complex models [40], as long as their

predictions are not misinterpreted [39].

We study a population dynamics model built from “general principles” in

our work, because it allows us to analyze the role of one of the most basic, yet

not fully understood properties of organisms, the sex ratio. In population biology,

understanding the effects and evolution of sex ratios remains a significant topic [41–47].

Since Hamilton’s seminal work [48] we know that Fisher’s principle for frequency-

based selection [49] does not apply when sex ratios are influenced by sex-linked genes,

and sex ratios may diverge significantly from unity. However, the consequences of

such sex ratios are largely unclear, as they depend on many external factors, and

it remains unknown whether they provide competitive or evolutionary advantage.

Our specific goal is to study the role of biased sex ratios in invasion dynamics and

resource competition.

Sex ratios can be often biased by the presence of cultural traits that result in

between-sex mortality difference [50]. It is certainly observable in human cultures

that favor sons over daughters [51–53], e.g., the “missing women” in Asia [54]. In

other species, cultural traits in habitat choice, tool use or foraging behavior can

cause between-sex differences, but their relationships to specific mortality rates are

unknown [55–58]. We aim to study how a cultural trait influencing male mortality

might regulate ecological consequences of sex-ratio evolution.

In Chapter 2, we provide a comprehensive study of a sex-detailed population

dynamics model. We contribute analytical results on the limits of sex ratio bias

that can be sustained by sex-specific mortality traits. We also show that during the

competition of resident and invader groups the survival outcome depends on higher

allocation of genes controlling the sex ratio. Further, we find that although genetic

sex-ratio traits may never coexist in a stable equilibrium, cultural mortality traits

can coexist, under certain conditions.
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At the end of Chapter 2, and throughout Chapter 3, we study spatial effects by

extending our model with one- and two-dimensional space, and simple assumptions

of diffusive dispersal. This allows us to study the fundamental phenomenon of

critical cluster size (critical radius) [1–3,59–62] and its dependence on sex ratios and

mortality traits. In addition, we propose a novel approach to generalize the spatial

distribution of the initial population patch, allowing us to find a distribution that

minimizes the cost of restoration, while ensuring survival. Due to the generality of

our approach, our results are applicable to any reaction-diffusion system with various

growth dynamics.

1.2 Dominating Sets in Complex Networks

Complex network research has expanded significantly in the past two decades.

Seminal works in network theory [21, 22, 63–69] revealed that many social, biological

and technological networks have complex structure, such as dense clustering, heavy-

tail degree distributions (in particular, power-law), and small diameter (“small-

world”), that cannot be described by classical random graph models [70]. Numerous

models, explanations and implications of complex network structures have been

studied in detail [71].

One particular topic that has received significant attention is the controllability

of dynamical processes on networks [72–81]. Network controllability refers to the

ability to drive all nodes to a desired state by a subset of controller nodes, and thus

it is strongly dependent on the dynamical process that takes place on the network.

Similarly, network observability refers to the ability to deduce the state of all nodes

from a few observations. However, in many applications, the dynamical process in

question can be simplified, and simple nearest-neighbor interactions can be assumed

(i.e., nodes can influence or observe their nearest neighbors only).

This reduces controllability to a purely topological problem and leads to the

research of dominating sets in complex networks. By definition, a dominating set

is a subset of nodes in a network, such that every node is either in the set (a

dominator), or adjacent to a dominator. The smallest cardinality dominating set is

called the minimum dominating set (MDS), and its size is defined as the domination
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number γ(G) of graph G. Dominating sets play significant role in several problems,

including network controllability [7,73,82] and observability [6], selecting high-impact

nodes in protein networks [23,83], social influencing [10,11], optimal sensor placement

for disease outbreaks [9], resource allocation [84], bank network supervision [85], and

network search [86].

The MDS is an important construct, because the inclusion of members into

the dominating set often comes at a certain non-zero cost. For example, in the case

of network sensor placement, if placing a sensor has a non-zero cost, and if each

sensor can eavesdrop on all its neighbors, then the MDS nodes define the lowest

cost placement that allows all nodes to be monitored. Continued interest in network

control, detection and efficient spreading or curbing of network flows motivates our

interest in understanding the properties of MDS on stylized network models, as well

as real networks.

Our first contribution is a comprehensive empirical and theoretical study of the

scaling of MDS size in scale-free networks, presented in Chapter 5. Understanding

the scaling tells us the expected costs of implementing network domination. We also

show, both theoretically and empirically, that scale-free networks may become easily

dominated when a domination transition occurs, under certain structural conditions.

In most applications that utilize dominating sets, the main goal is to minimize

the size of the selected dominating set, hence minimizing the cost of domination.

However, finding the exact MDS in a general graph is one of the well-known NP-hard

problems of graph theory. In addition, it has been shown that finding a sublogarithmic

approximation (one that is smaller than c logN times the true MDS size, where N is

the network size and c > 0) is also NP-hard [87]. Therefore, the only alternative is to

develop heuristics and approximation algorithms for finding small dominating sets.

A commonly used method for finding an MDS approximation is a simple greedy

algorithm [88–90]. It provides a theoretically optimal approximation to the MDS

(specifically, it provides a factor of 1 + logN approximation, in the worst case),

and runs in time linear in the number of edges, which makes it ideal for practical

applications. We also use this method in our study of MDS scaling behavior.
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Another approach is to solve the binary integer programming equivalent of the

MDS problem. In this case finding the solution remains NP-hard (since the result

would be the exact MDS); but solvers such as Branch and Bound (first introduced

in [91], used in e.g. [92]) can provide intermediate results that can only be used as

approximate solutions. However, obtaining even one approximation requires the

solution of at least one linear programming relaxation of the integer problem, which

has at least O(N2) run time (complexity of processing the input), exponential run

time in the worst case, and yields no significantly better approximation to the MDS

size in finite waiting time than the greedy algorithm, according to our experiments.

Several methods developed recently for finding small dominating sets try to

exploit certain structural features of the network. For example, hybrid genetic

algorithms have been proposed to find small dominating sets [93,94]. In addition,

various algorithms have been developed to approximate special types of dominating

sets, such as the minimum connected dominating set (where the induced subgraph

of dominator nodes has a single connected component), applicable in wireless com-

munication and sensor networks [5, 95–98], or the minimum independent dominating

set (where none of the dominators are adjacent) [99–101]. It is also a notable area of

research to develop faster exponential algorithms to find the exact MDS [102–105].

While these are significant in theoretical computer science, exponential algorithms

cannot be applied to large real networks due to their lack of scalability.

In all methods mentioned above, the common theme is the assumption of the

availability of global connectivity information (i.e., adjacency matrix, or equivalent

information). However, in case of real large-scale networks (over tens of millions of

nodes and edges) this is highly unlikely, and the cost of collecting this information

could negate the benefits of efficient control by finding small dominating sets. Thus,

our goal is to develop new dominating set selection strategies that rely only on

limited local information, and are inherently distributable. We address this issue in

Chapter 6.

Attacks on complex networks, fault tolerance, and defense strategies against

damage of nodes and edges have gained significant interest in network science [106–109].

Networks with scale-free topologies have been found to be resilient against random
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node damage, but vulnerable to targeted removal of high degree nodes [110–112].

Research has also focused on improving the robustness of these networks against var-

ious combinations of attacks [113–115], and on studying the dynamically progressing

effects of an initial damage, such as cascading failures [116,117].

While the topological effects of damage are well-understood, little is known

about the effects on network domination. If nodes from the dominating set are deleted,

some nodes in the remaining network may no longer be dominated (i.e., we may

lose control over them). However, if the topology is relatively intact, then efficient

control over the remaining network is still desirable. Dominating sets optimized for

small size (minimum cost) may not have sufficient redundancy to provide complete

domination “coverage.” On the other hand, adding a small amount of well-picked

nodes to the dominating set may significantly improve post-damage domination, at

an acceptable cost. We explore these questions in Chapter 7, and contribute two

new methods for selecting dominating sets with flexible balance between resilience

and set size.

Mixing patterns are a fundamental property of complex networks [118, 119],

usually measured by assortativity. A network is considered assortative if its nodes

tend to connect to other nodes that have similar number of connections, while in

a disassortative network the high degree nodes are adjacent to low degree nodes.

Investigating the behavior of dominating sets with respect to assortativity is essential

for deeper understanding of the network domination problem. Several studies

conducted on real-world networks have shown that social systems are assortative,

while technological ones exhibit disassortative behavior [119]. Social psychology

studies have shown that humans are more likely to establish a connection with

individuals from the same social class, or with whom they share common interests,

such as education or workplace. This tendency, named homophily [120], also governs

the attachment rules in real-life social systems, and it is reflected in the mixing

patterns of these networks, which are of significant importance in dynamical processes

on social networks. Specific connectivity schemes affect influence propagation and

epidemic spread [9, 121], and are also responsible for Web page ranking [122] and

internet protocol performance [123].
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We contribute a new method for adjusting the assortativity in an existing

network topology, described in Chapter 4. Using this method we investigate the

effects of network assortativity on various dominating sets in Chapter 6 and its

effects on domination stability in Chapter 7.

Finally, in Chapter 8, we provide a short proof of concept, using the linear

threshold model [8,124–127] of opinion dynamics, to illustrate the applicability of

MDS in social influencing.



CHAPTER 2

CULTURAL EFFECTS ON ECOLOGICAL

CONSEQUENCES OF EXTRAORDINARY SEX RATIOS

Since Fisher’s classic insight [49], sex-ratio evolution [41–43] and the impact of a given

sex ratio on ecological dynamics [44–47] have remained central issues in population

biology. Fisher noted [49] that neither sex should be rarer at evolutionary equilib-

rium, a consequence of frequency-dependent selection. That is, equal investment of

reproductive effort in the two sexes — commonly implying a sex ratio close to unity

(1:1 ratio of males and females) — can be evolutionarily stable [128].

Hamilton [48] studied sex ratios departing significantly from unity, emphasizing

that Fisher’s argument of frequency-dependent selection does not apply when a

sex-linked gene controls sex ratio at birth. In particular, if a gene governing sex ratio

occurs in the heterogametic sex only (i.e., sex-linked genes, carried only by females

in the ZW sex-determination system, and males in the XY system), the gene’s fitness

depends only on the number of heterogametic offspring produced. The frequency

of such a gene may advance rapidly, endangering population persistence [129,130].

That is, a biased sex ratio controlled by sex-linked genes can leave members of the

more common sex without mates; the consequent “marriage squeeze” [44] may lead

to population decline [48,131]. Equivalently, an Allee effect (reduced per-capitum

growth rate at low population densities [132–134]; dependent on the density of each

sex) can limit the degree of sex-ratio bias, for given total density, capable of averting

direct decline to extinction [45, 133–135]. Our study supposes that an extraordinary

sex ratio’s ecological consequence, population persistence or extinction, depends on

interaction with a culturally inherited trait.

Cultural traits may enforce a between-sex mortality difference [50], leading to

population densities biased toward one sex. In certain human cultures, infanticide

and neglect increase female mortality [51,52,54]; Laland et al. [53] assume that these

Portions of this chapter previously appeared as: F. Molnár Jr., T. Caraco, and G. Korniss,
“Extraordinary Sex Ratios: Cultural Effects on Ecological Consequences,” PLoS One 7, e43364
(2012).
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cultural traits are transmitted vertically, i.e., parent to offspring. In other species,

vertical cultural transmission clearly causes between-sex differences in habitat choice,

tool use, or foraging behavior, but their relationships to sex-specific mortality rates

are unknown [55–58]. Our models explore how a cultural trait influencing male

mortality might regulate ecological consequences of sex-ratio evolution.

We treat sex ratio as a sex-linked genetic trait, and restrict cultural transmission

to the vertical case [136]. Our two-sex population dynamics assumes competition

for a growth-limiting resource; competition generates a strong Allee effect. Within

a group, each female carries the same sex-ratio allele, and each male experiences

the same mortality rate; parameters differ between groups. Resource competition is

preemptive; each group has the same niche [137–139].

Our approach assumes pairwise competition between resident and invader

groups, where group refers to population structure, not the level of selection. In

Sober’s [140] terminology, we associate properties driving selection with groups, and

associate the objects of selection with individuals — individual females in this case.

The resident group (sex ratio, male mortality culture) rests at ecological equilibrium,

and we ask if a rare, different group can invade the resident. Our results for invasion,

extinction, and (cultural) coexistence indicate how resource competition, cultural

variation, and sex-ratio evolution interact.

2.1 Model

2.1.1 Generic Assumptions

In birds (and butterflies) sex determination follows the ZW system. W is the

sex-determining chromosome; females are ZW, and males are ZZ [141]. Our model

assumes that the W chromosome carries an allele fixing the sex ratio among that

female’s offspring. The sex linkage means that a female inherits her mother’s sex

ratio, and the sex-ratio gene never occurs in males. Hence, the fitness of the sex-ratio

allele (and of any gene on the W chromosome) is advanced only through production

of daughters [48]. To focus our discussion accordingly, we model the “female ratio,”

the proportion of a female’s offspring born female. Females of a single group carry

the same sex-ratio allele.
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The assumption of sex-linkage might seem restrictive. However, in a number of

bird species, individual females shed Z-chromosome and W-chromosome bearing eggs

non-randomly [142, 143]. The observed variation in sex ratio among females may

reflect facultative plasticity [144], but could generate some of the population-dynamic

consequences of sex ratio that we model.

In addition to the genetic sex-ratio trait in females, all members of a given

group share a vertically transmitted cultural norm that governs male behavior, which,

in turn, fixes the male mortality rate for that group. Females of different groups

share the same mortality rate. Hence, for simplicity, we assume a female adopts

her mother’s culture. If both parents belong to the same group, their son faithfully

acquires the parental culture. When parents of different cultures (groups) mate, a

son acquires one or the other culture, each with probability 1/2.

Note, that our key assumption about sex ratio is the linkage to the heteroga-

metic chromosome, not the specific sex-determination system (i.e., ZW). For example,

mammals (including humans) follow the XY system, where males are the heteroga-

metic sex (XY). In this case we could equivalently model a “male ratio” trait linked to

the Y chromosome that a male inherits from his father, and cultural traits influencing

female mortalities. Due to this symmetry, our model is applicable to a wide range of

species, where sex is determined by specific sex chromosomes, and exhibit cultural

mortality traits. In particular, our model is applicable to humans, due to several

Y-linked genes [145], as well as cultural traits influencing female mortality [51–54].

To address competition between groups, we envision a resident group (a single

female ratio and a single male mortality rate) at ecological equilibrium in a resource-

limited environment. We then introduce (via demic/genetic migration) a small

inoculum of an invader group. The resident and the rare invader differ in female

ratio, and ordinarily differ in male mortality. The competitive dynamics proceeds to

ecological equilibrium. If the rare female-ratio allele has positive growth, it will drive

change in culture. Since individuals mate randomly, extinction of a group’s female-

ratio allele need not always imply loss of the associated cultural trait. However, loss

of a cultural mortality trait implies that the associated female-ratio allele has been

excluded competitively.
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2.1.2 Mathematical Model

Based on our generic assumptions above we can formulate the model math-

ematically. We consider two-sex population growth with two female ratio/male

mortality groups; the groups allow us to model resident-invader differences. When

a female of group i (i = 1, 2) reproduces, the resulting offspring is female with

probability θi, and male with probability (1− θi), independently of the group of the

male with whom she mates. θi is the female ratio for group i, transmitted faithfully

from mother to daughter. Different groups, by definition, differ in female ratio. All

females have the same mortality rate, µf .

A male’s group specifies his mortality rate, µi (i = 1, 2). If male mortality

exceeds the rate for females, µ1, µ2 > µf . But we do not exclude the case where

the female mortality exceeds one or both male rates. If both parents belong to

the same group, each male offspring has that group’s mortality rate, acquired by

vertical cultural transmission. If a male’s parents belong to different groups, the

male acquires mortality rate µi with probability 1/2.

Fi and Mi represent the global density of females and males, respectively, of

group i. All individuals require the same resources, so that population growth at

larger densities will self-regulate. The preceding assumptions imply the following

dynamics under homogeneous mixing (or “mean-field”):

∂tF1 = θ1 (1−N)F1 (M1 +M2)− µfF1

∂tM1 = (1−N)

[
(1− θ1)F1

(
M1 +

M2

2

)
+ (1− θ2)F2

(
M1

2

)]
− µ1M1

∂tF2 = θ2 (1−N)F2 (M1 +M2)− µfF2

∂tM2 = (1−N)

[
(1− θ2)F2

(
M1

2
+M2

)
+ (1− θ1)F1

(
M2

2

)]
− µ2M2, (2.1)

where N = F1 +M1 + F2 +M2 is total global density; 0 ≤ N ≤ 1. Males encounter

females as a mass-action process, modeling random mating [135,136]; more compli-

cated assumptions about pair formation suggest different “marriage functions” [47].

The fraction of matings that reproduce successfully equals the unoccupied fraction

of the environment, (1−N). Below, we take group 1 as the resident, and identify

group 2 as the (initially rare) invader.
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If only a single group occupies the environment, the equations reduce to those

studied by Tainaka et al. [130]:

∂tF = θ (1−M − F )FM − µfF

∂tM = (1− θ) (1−M − F )FM − µmM . (2.2)

The authors focused on the symmetric case, µf = µm. An important feature of this

model is that the cubic dynamics produces a strong Allee effect [133, 134]. That

is, there exists a threshold for the initial population density, below which growth

is necessarily negative, and extinction must follow [135]. The single-group model

serves as the starting point of our analysis. In particular, initial conditions of our

competition dynamics will depend on the stable, non-trivial fixed point of the single-

group model (corresponding to positive equilibrium densities for females and males

of group 1).

2.2 Analysis of Dynamics

In this section we provide a complete description of the fixed points (stationary

solutions) of Eqs. (2.1) and (2.2) analytically, and we use both analytic and numerical

methods to analyze their local stability.

Since this study employs extensive numerical integration, we justify our choice

of an ordinary differential equation (ODE) solver. Equations (2.1) are strongly

coupled and may become stiff, a challenge to the solver. Speed is another important

factor, because we want to map the entire parameter space of the model, which

requires a very large amount of computation. We choose the explicit fourth-order

Runge-Kutta method [146], which gives the precision we require. We also utilize

adaptive time stepping to avoid problems with any potential stiffness, and to increase

integration speed when the slopes of the densities are small. Since we are interested

in stationary solutions of the equations, the stopping condition for the integration

specifies that all numerical derivatives are smaller than a predetermined limit:

∆A

∆t
< ε, A ∈ {F1,M1, F2,M2} (2.3)

In our ODE numerical integrations, we set the stopping condition at ε = 10−8.
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2.2.1 Stability of the Resident Group

The first step of our analysis is establishing the necessary conditions for an

ecologically stable resident population. A stable resident occupies the habitat alone,

at a real, positive fixed point where self-regulation limits growth, governed by

Eqs. (2.2).

In general, the system has three fixed points. There is one trivial solution at

zero density, corresponding to extinction:

(F 0,M0) = (0, 0), (2.4)

and a pair of nonzero fixed points, which can be obtained by first manipulating the

two stationary state equations, Eqs. (2.2), to write a simple quadratic equation for

the stationary total density:

N(1−N) =
µf

θ
+

µm

1− θ
, (2.5)

yielding solutions

N± =
1±
√
D

2
, (2.6)

with

D(µf , µm, θ) = 1− 4

(
µf

θ
+

µm

1− θ

)
. (2.7)

Therefore, the nonzero fixed points are:

(F±,M±) =

(
µm

1− θ
· 1

1−N±
,
µf

θ
· 1

1−N±

)
. (2.8)

The stability of these fixed points can be easily analyzed by linearizing Eqs. (2.2);

the “−” fixed point is unstable, and the “+” one is stable. The nonzero fixed points,

hence a stable positive equilibrium (an ecologically stable resident), exist only if

D > 0, for which the necessary condition is:

√
µf +

√
µm < 1/2 . (2.9)
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The biological significance of the structure of the above solutions is two-

fold [130]. First, for D > 0, the system exhibits the Allee effect. Unless the (initial)

population density is sufficiently high (N(0) > N−), the zero fixed point attracts the

dynamics, and the population goes extinct. Second, provided that
√
µf +
√
µm < 1/2,

there is only a finite interval θc1(µf , µm) < θ < θc2(µf , µm), where D > 0, i.e., where

the population can persist at equilibrium; see Fig. 2.1. These boundaries, functions

of the culturally transmitted mortality rate, are given by:

θc1,2(µf , µm) =
(1 + 4µf − 4µm)±

√
(1 + 4µf − 4µm)2 − 16µf

2
. (2.10)

Note, that as we increase either male or female mortalities, the range of possible θ

values capable of maintaining an extant resident population shrinks, see Fig. 2.1.

Essentially, Fig. 2.1 shows a cross-section of the parameter space where D > 0. For

a complete picture, Fig. 2.2 shows the entire region of the parameter space satisfying

D > 0.

We can also identify the optimal sex ratio, corresponding to the maximum

total density. Between the two critical θ values, at

θ∗ =
1

1 +
√
µm/µf

, (2.11)

the global maximum density is:

Nmax = N+(θ∗) =
1 +

√
1− 4(

√
µf +

√
µm)2

2
(2.12)

where the female to male density ratio is F ∗/M∗ =
√
µm/µf .

As a check, we can use the analytical stationary densities to quantify our

numerical integration’s accuracy. We performed 5000 test runs with randomly chosen

parameters that obey D(µf , µm, θ) > 0. For ε = 10−8 as the stopping condition, we

find that the absolute difference of the numerically computed fixed point was only

9.5 × 10−7 ± 14% from the analytical value, with 95% confidence. This accuracy

suffices for our work.

As we noted earlier, the population must not only have parameters satisfying
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Figure 2.1: Stationary total population density as a function of female
ratio at birth, for various mortality rates. (a) identical female
and male mortality rates; (b) female and male mortality rates
differ.

D > 0, but also the initial growth must overcome a strong Allee effect [134], in order

to reach stable, positive equilibrium. The Allee effect defines a separatrix on the

phase map of initial female and male densities, separating the two attraction basins

of the stable fixed points. Below the separatrix (closer to zero density) extinction

always results, independently of other parameters, since the growth rate is negative.

Above the separatrix the population grows to self-regulated equilibrium. To find

this threshold numerically, at given model parameters, we sweep over initial female

density values, and at each female density we conduct a search using bisection for

the initial male-density threshold value, numerically integrating Eqs. (2.2) until

they converge to a stationary value (zero or nonzero). Using this method we can

determine the threshold value with arbitrary precision.

Figure 2.3 displays the Allee-threshold for various parameter combinations. In

Fig. 2.3(a), where µf = µm, an unbiased female ratio (θ = 0.5) allows the lowest total

population density before extinction due to the Allee effect ensues. When the sexes

have the same mortality, unbiased sex allocation also maximizes total population

density at positive equilibrium [130].

Figure 2.3(b) verifies that increasing female mortality, µf , for given θ and

µm, expands the region where the Allee effect leads to extinction. Not surprisingly,

increasing male mortality produces a parallel effect. Mortality-rate asymmetry and
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Figure 2.2: Region of the parameter space where the resident is per-
sistent. Parameter space region defined by D(µf , µm, θ) > 0.
Choosing parameters from the indicated domain always re-
sults in a stable nonzero population, given sufficiently high
initial densities.

biased female ratios distort the shape of the thresholds in Fig. 2.3, but the same

general patterns emerge.

For a resident population, we have specified how existence of a positive equilib-

rium depends on the interaction of female ratio at birth and sex-specific mortalities.

We have also shown that initial conditions (given existence of a positive equilibrium)

required to avert extinction due to the Allee effect depend on the same parameters.

A practical consequence is that we must choose initial densities for numerical inte-

gration carefully, so that when the competitive dynamics results in extinction, we

can clearly identify the reason as either the Allee effect or exclusion.

2.2.2 Dynamics of Two Interacting Groups

Given a complete picture of single-group dynamics, we now focus on between-

group interactions to quantify how population consequences of female-ratio evolution

can be affected by male mortality. Equations (2.1) govern the dynamics of the
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Figure 2.3: Allee threshold of the resident. Survival/extinction threshold
defined by the Allee-effect, at various female ratios (a) and
various female mortalities (b). Other parameters: (a): µf =
µm = 0.02; (b): θ = 0.5, µm = 0.02.

system, which has nine fixed points. One is the trivial fixed point where all densities

vanish, and we discuss the rest as follows.

We can easily identify fixed points directly related to those of the single-group

case; there are two symmetric pairs of nonzero fixed points that we would find in

each single group model, while the other group is excluded (having zero density).

Identically, these densities are given by Eq. (2.8); the “−” solution is always unstable,

while the “+” one is stable, but only if the male mortality rate of the allele with the

higher female ratio is less than twice the male mortality rate of the other allele. For

example, when allele 1 is excluded, these two fixed points are

(F±1 ,M
±
1 ) = (0 , 0)

(F±2 ,M
±
2 ) =

(
µ2

1− θ2

· 1

1−N±
,
µf

θ2

· 1

1−N±

)
, (2.13)

where N± is given by Eq. (2.6) with µm = µ2 and θ = θ2. Further, the “+” solution

above is stable provided that µ2/µ1 < 2 and θ2 > θ1. We obtain the symmetric case

by interchanging the extant allele/culture with that excluded:

(F±1 ,M
±
1 ) =

(
µ1

1− θ1

· 1

1−N±
,
µf

θ1

· 1

1−N±

)
(F±2 ,M

±
2 ) = (0 , 0) , (2.14)
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where N± is given by Eq. (2.6) with µm = µ1 and θ = θ1. The “+” solution above is

stable provided that µ1/µ2 < 2 and θ1 > θ2. We refer to stable fixed points of this

type [i.e., where the densities of the extant allele are given by the “+” solution in

Eqs. (2.13) and Eqs. (2.14)] as type-I fixed points.

It is important to emphasize that if both groups are present initially, then

competitive exclusion leaves one group extinct, and one extant, if 1
2
< µ2/µ1 < 2.

Therefore only one of the “+” solutions is locally stable, and it belongs to the group

with the greater female ratio. In other words, when male mortality rates imply a

type-I fixed point, the greater female ratio always excludes the lesser ratio.

The four remaining fixed points (again, forming two pairs by symmetrically

exchanging group 1 with group 2) are qualitatively distinct from those discussed

above. At these fixed points only one female-ratio allele remains extant, but male

mortality traits “coexist” (i.e., male cultural dimorphism). That is, the population

is genetically uniform, in that all females carry the same female ratio allele, but the

(male) population is culturally dimorphic; father to son transmission maintains the

culture of the group whose females have been excluded competitively [see Eqs. (2.1)].

We refer to the corresponding fixed points as type-II fixed points.

Consider a stable fixed point of this sort, when F1 = 0. The remaining equations

for the stationary state then become

0 = (1−N) (1− θ2)F2

(
M1

2

)
− µ1M1

0 = θ2 (1−N)F2 (M1 +M2)− µfF2

0 = (1−N) (1− θ2)F2

(
M1

2
+M2

)
− µ2M2 , (2.15)

where the overall density is now N = M1 +M2 + F2. After some tedious algebra, we

again find a simple quadratic equation for the overall density:

N(1−N) =
µf

θ2

+
2µ1

1− θ2

, (2.16)

which has the solutions

Ñ± =
1±

√
D̃

2
(2.17)
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with

D̃(µf , µ1, θ2) = 1− 4

(
µf

θ2

+
2µ1

1− θ2

)
. (2.18)

The fixed points follow from Eqs. (2.15) after some further elementary manipulations:

(F±1 ,M
±
1 ) =

(
0 ,

µ2/µ1 − 2

µ2/µ1 − 1
· µf

θ2

· 1

1− Ñ±

)
(F±2 ,M

±
2 ) =

(
2µ1

1− θ2

· 1

1− Ñ±
,

1

µ2/µ1 − 1
· µf

θ2

· 1

1− Ñ±

)
(2.19)

The necessary conditions are µ2/µ1 > 2, θ2 > θ1, and positivity of the discriminant,

D̃(µf , µ1, θ2) = 1− 4

(
µf

θ2

+
2µ1

1− θ2

)
> 0 . (2.20)

The preceding condition holds if

√
µf +

√
2µ1 < 1/2. (2.21)

The “−” solution in Eqs. (2.19) is always unstable, while the “+” solution can

be stable, if the necessary conditions above are satisfied. In that case, there is a

finite range of θ̃c1(µf , µ1) < θ2 < θ̃c2(µf , µ1) where D̃(µf , µ1, θ2) > 0, so that cultural

coexistence persists. The boundaries of this coexistence region are given by:

θ̃c1,2(µf , µ1) =
(1 + 4µf − 8µ1)±

√
(1 + 4µf − 8µ1)2 − 16µf

2
. (2.22)

Within this regime, the overall population density is maximal at

θ∗2 = 1/(1 +
√

2µ1/µf), (2.23)

where the overall female to male density ratio is F ∗2 /(M
∗
1 + M∗

2 ) =
√

2µ1/µf .

Interestingly, at the stable fixed point in Eq. (2.19) the male density ratio is

M1/M2 = µ2/µ1 − 2; hence the relative abundances of the male cultural trait

values do not depend on the female ratio.

Analogously, one can obtain fixed points of the same form as in Eqs. (2.19) by

choosing F2 = 0 and simply interchanging indices 1 and 2 in all respective expressions,
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leading to:

(F±1 ,M
±
1 ) =

(
2µ2

1− θ1

· 1

1− N̄±
,

1

µ1/µ2 − 1
· µf

θ1

· 1

1− N̄±

)
(F±2 ,M

±
2 ) =

(
0 ,

µ1/µ2 − 2

µ1/µ2 − 1
· µf

θ1

· 1

1− N̄±

)
(2.24)

with

N̄± =
1±
√
D̄

2
(2.25)

and

D̄(µf , µ2, θ1) = 1− 4

(
µf

θ1

+
2µ2

1− θ1

)
. (2.26)

Note, that similarly to the type-I fixed points, only one of the “+” solutions

in either Eqs. (2.19) or (2.24) can be stable at one time, and again, it belongs to

the group with the greater female ratio. In other words, when male mortality rates

imply a type-II fixed point, females with the greater female ratio exclude the other

group’s females, while males from both groups coexist.

To summarize, the model does not permit equilibrium coexistence of female

ratio alleles, but can permit equilibrium diversity in cultural traits governing male

mortality. Also note, as is clear from the necessary conditions, that of type-I and

type-II fixed points, only one can be stable at a time. In Fig. 2.4 we illustrate the

flow in the mean-field dynamics for a set of parameters when both type-I and type-II

fixed points exits, but in the presence of co-occurring males of the other allele, only

type-II is stable.

2.3 Invading a Stable Resident Group

Having obtained the nine fixed points for the two-group model analytically,

we approach the stability analysis, and the analysis of possible outcomes of an

invasion numerically. Analytical study of the system’s stability proves difficult, due

to the number of variables and parameters (4 variables and 5 parameters). To be as

thorough as possible, we performed numerical integration systematically to span a

significant region of the five-dimensional parameter space. The range and step of the

parameters in our numerical scheme can be found in Table 2.1.

Each run begins with a stationary resident population, with allele 1 and cultural
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Figure 2.4: Mean-field density flows in the (M1, F2,M2) space (restricted
to F1 ≡ 0) with type-I fixed point P1 (stable if M1 = 0) and
type-II fixed point P2 (stable if M1 > 0) for µf = 0.02, µ1 = 0.01,
µ2 = 0.04; θ1 = 0.4, θ2 = 0.6.

trait µ1. If model parameters allow a stable positive equilibrium, we choose initial

densities accordingly. We then introduce the invaders, with female-ratio allele 2 and

cultural trait µ2. For each set of parameters (in each series) we performed two runs,

one with infinitesimal initial density of invaders (10−4) and one with high invader

density (0.45).

To portray the results, we generate a number of “4D” plots. Each shows a

table containing 2D plots with the results of each run; the axes of each 2D plot are

values of the same two cultural parameters (µ1 and µ2, all with the same range).
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Table 2.1: Parameter regions and step sizes for numerical integration.
Each set of parameters identifies two runs: one with high (0.45)
and one with low (10−4) initial invader density.

Parameter Lower bound Upper bound Step

Series 1

θ1 0.01 0.99 0.01

θ2 0.01 0.99 0.01

µ1 0.01 0.04 0.005

µ2 0.01 0.04 0.005

µf 0.01 0.04 0.005

Series 2

θ1 0.1 0.9 0.1

θ2 0.1 0.9 0.1

µ1 0.001 0.1 0.001

µ2 0.001 0.1 0.001

µf 0.01 0.04 0.01

Another two parameters (female ratios θ1 and θ2) vary across the rows and columns

of the tables (the 4D plots). We produce as many tables as required by the range of

the fifth parameter (female mortality µf). In each 2D plot, one pixel represents the

final stationary densities of the female ratio alleles. The pixel’s location corresponds

to the parameters for which it was computed; resident and invader allele densities

are shown on different color channels. This way, we can visually compare all the

results simultaneously, simplifying the analysis greatly. Figure 2.5 shows one 4D

plot; the associated parameter ranges produce the full set of the model’s outcomes.

In the following sections we investigate the necessary and sufficient conditions

for successful (pairwise) genetic invasion of the resident female ratio, and the necessary

conditions for cultural “coexistence.”

2.3.1 Invasion to Exclusion of the Resident

Figure 2.6(a) shows an example of successful invasion leading to exclusion of

both the resident allele and resident culture. Following introduction of the invading

group, the resident density drops quickly, and the successful allele (females) and

successful culture (observed in males) advance to become the new resident group. As

a numerical check, we note that both infinitesimal and high invader densities always

result in identical final densities.
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Figure 2.5: Stationary population densities. The stationary resident
(group 1) is invaded by group 2, initially at an infinitesimal
density (10−4). Large axes indicate common parameters in
rows and columns; every tile has the same axes, scaled as
indicated in the bottom right corner. Color scales use inde-
pendent color channels to show resident and invader densities
independently. Fixed parameter: µf = 0.02.
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Our numerical results on Fig. 2.5 show immediately that female ratios determine

the outcome of invasion; a successful invader in pairwise competition has the greater

female ratio. That is, successful invasion always requires θ2>θ1, and θ2<θ1 assures

that the resident resists invasion. Furthermore, successful invasion by a female-ratio

allele assures that the associated cultural trait (with value µ2) advances from rarity.

Notice, that for a successful invasion the greater female ratio is only a necessary,

but not a sufficient condition. It only determines which sex-ratio allele excludes the

other. Since the female-ratio allele is sex-linked, dependence of invasion on (θ2 − θ1)

simply recalls Hamilton [48]. But in our model, the ecological effect of invasion also

depends on the culturally transmitted trait. Achieving both genetic and cultural

exclusion of the resident (F1=0, M1=0, i.e., type-I fixed point for the invader) further

requires
√
µf +

√
µ2 < 1/2 and µ2/µ1 < 2.

In addition to the necessary conditions for the type-I fixed point, there is an

additional condition that guarantees the survival of the invader after it has excluded

the resident allele and cultural trait. That is, the invader alone must also be stable,

for which the sufficient condition is θc1(µf , µ2) < θ2 < θc2(µf , µ2) [see Eq. (2.10)],

given by the positivity requirement of the corresponding discriminant [Eq. (2.7)].

We explore the outcomes of cases when the invader does not satisfy the conditions

above in the following sections.

2.3.2 Invasion to Cultural Coexistence

Recall that Eqs. (2.1) do not have fixed points where differing female ratios

co-occur. The model, however, does allow for cultural coexistence, where males of

both groups co-occur, but females of only one group remain extant.

Figure 2.6(c) displays an example where the resident culture, but not the

resident allele, persists after successful invasion. The invader has the greater female

ratio (θ2 > θ1), and therefore excludes the resident allele competitively. However,

the final equilibrium state is a type-II fixed point where the resident’s male-mortality

trait persists via father-to-son cultural transmission. The ratio of males at dynamic

equilibrium is M1/M2 = µ2/µ1 − 2. Note that the competitively driven increase in

female ratio produces a decrease in total population density (females plus males) at

equilibrium [Fig. 2.6(c)].



27

0 500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

0.8

1.0

P
o
p
u
la

ti
o
n
 d

e
n
s
it
y

Time

0 500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

0.8

1.0

P
o
p
u
la

ti
o
n
 d

e
n
s
it
y

Time

0 500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

0.8

1.0

P
o
p
u
la

ti
o
n
 d

e
n
s
it
y

Time

0 500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

0.8

1.0

P
o
p
u
la

ti
o
n
 d

e
n
s
it
y

Time

 F
1

 M
1

 F
2

 M
2

 F
1
+M

1

 F
2
+M

2

Figure 2.6: Population-density time series. (a) successful invasion; (b)
invasion followed by extinction; (c) coexistence of resident
males with the invader allele; (d) coexistence of invader males
with resident allele. The vertical dotted line indicates the
time when the invader was added to the system, at 10−3 den-
sity (both males and females). Common parameter: µf = 0.03.
Individual parameters: (a) θ1 = 0.4, θ2 = 0.7, µ1 = 0.03,
µ2 = 0.03; (b) θ1 = 0.4, θ2 = 0.7, µ1 = 0.05, µ2 = 0.08; (c)
θ1 = 0.4, θ2 = 0.7, µ1 = 0.03, µ2 = 0.08 (here, F1=0 in the final
equilibrium); (d) θ1 = 0.7, θ2 = 0.4, µ1 = 0.05, µ2 = 0.01 (here,
F2=0 in the final equilibrium).

In order to achieve a cultural coexistence, where resident females are excluded

(F1=0, i.e., type-II fixed point), the following necessary conditions must be met:
√
µf +

√
2µ1 < 1/2 and µ2/µ1 > 2. The latter condition is the opposite of what

we have for a type-I fixed point, and indeed it decides whether a type-I fixed point

(complete exclusion) or a type-II fixed point (cultural coexistence) is the conclusion,

as long as all other conditions are met.
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Notice, that for a type-II fixed point, the necessary conditions do not include

the stability requirement for neither the invader nor the resident group standing alone.

In essence, type-II fixed points open the possibility for groups to survive together,

while they could not sustain themselves alone. This enables a scenario where we can

save an unstable resident population from extinction by introducing another allele

and/or culture to the group. We explore these possibilities in Section 2.4.

While the sufficient conditions for the survival of either resident or invader alone

are not required in a type-II fixed point, we do have a similar sufficient condition for

the cultural coexistence: the invaders’ female ratio must fall into a finite interval,

θ̃c1(µf , µ1) < θ2 < θ̃c2(µf , µ1) [see Eq. (2.22)], given by the positivity requirement of

the corresponding discriminant [Eq. (2.20)].

By the symmetry of the equations, a type-II stable fixed point also exists

with F2=0. That is, the resident population resists invading females (θ2 < θ1), but

the introduced cultural trait advances from rarity and persists at equilibrium; see

Fig. 2.6(d). The ratio of males at this equilibrium is M2/M1 = µ1/µ2 − 2. Put

simply, we can exchange the resident-invader roles of the two groups, and reach the

same dynamic equilibrium. Necessary conditions for this case are
√
µf +

√
2µ2 < 1/2

and µ2/µ1 < 1/2.

Figure 2.5 includes cases of equilibrium cultural coexistence. For example,

in the tile where θ1 = 0.2 and θ2 = 0.4, the sharp change in color along the line

µ2 = 2µ1 indicates the condition for cultural coexistence. When this condition is not

satisfied, the culture associated with the lower female birth ratio always declines to

extinction.

2.3.3 Invasion to Extinction

Given the competitive advantage of increased female allocation in our model,

evolution of the sex-linked trait might threaten population persistence. Our model’s

dynamics includes a case where successful invasion of a stable resident is followed by

extinction of the entire population. We observe this result in numerical experiments

where the invader has both the greater female ratio (θ2 > θ1) and the greater male

mortality rate, so that the sufficient conditions for both type-I and type-II fixed
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points fail to hold. The greater female ratio drives invasion, but the invader’s

combined genetic-cultural demography does not satisfy the condition for a stable,

positive equilibrium. Hence, the successful invader would not advance from rarity

absent the resident group.

Figure 2.5 shows an example of invasion to extinction; note the black region of

the tile where θ1 = 0.4 and θ2 = 0.7. For a particular mortality-rate combination,

Fig. 2.6(b) depicts the time-dependent densities for a case of invasion to extinction.

The necessary conditions for invasion are met (θ2 > θ1,
√
µf +

√
µ2 < 1/2, and

µ2/µ1 < 2). However, the sufficient condition for the invader’s survival does not

hold: θ2 > θc2. Hence the invader grows when rare and excludes the resident, but

the invader cannot persist. Essentially, the invading female ratio allele increases

its initial density by “exploiting” males of the resident group while competing for

resources with resident females. After some time the density of the resident females

reaches zero. The reduced density of females means that the production of males

(both resident and invader) is reduced. Consequently, the invading group, once

occupying the environment alone, cannot maintain a positive equilibrium density,

and a “marriage squeeze” takes the population to extinction.

Given this result, one can envision a stable population where immigration or

mutation introduces new alleles over a lengthy time scale. If a new allele has a higher

female ratio than the current resident, it will advance. A series of allelic substitutions

might increase the female ratio continuously. Our model does not prevent the female

ratio from surpassing the threshold defined by Eq. (2.10), where the population

begins to decline to extinction — recalling Hamilton’s [48] comment on sex linkage

and sex-ratio evolution.

2.4 Rescuing an Unstable Resident Group

In the previous section we have explored scenarios where the resident group

was assumed to be initially in an ecologically stable state. However, invasion of an

unstable, declining resident population is also a possible scenario. While invasions

ending in type-I fixed points (where the invaders exclude the resident sex-ratio allele

and the cultural trait) are the trivially identical in this case, type-II fixed points
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(coexistence of cultural traits) open the possibility to save the resident population

from extinction by introducing a suitable invader.

Recall that a resident group has two conditions for stability. First, when
√
µf +

√
µm < 1/2, the discriminant in the fixed-point solutions is positive. This

allows for a finite range of sex ratios, θc1(µf , µm) < θ < θc2(µf , µm), where the resident

is ecologically stable [see Eq. (2.10)]. Violation of either conditions makes the resident

unstable, where any initial densities rapidly reduce to zero. However, if an invader is

introduced while the resident population is still sufficiently large, extinction may be

averted.

2.4.1 Saving Both Genetic and Cultural Traits

The only possible way to save both males (expressing the cultural trait) and

females (expressing the female ratio allele) is to reach a type-II fixed point, where

F2=0. In this case, the invader’s male-mortality trait persists via father-to-son

cultural transmission, while resident females benefit from the presence of additional

males, providing sufficient mating partners. Indirectly, resident males also benefit,

because they are sustained at a positive equilibrium density.

In case of a stable resident, the invader must have a smaller sex ratio (θ2 < θ1)

to ensure that the resident females remain extant, and invader females go extinct.

However, this is not a requirement here, because we do not need to actually introduce

invader females to the resident group. Since our goal is to exclude them eventually, it

is sufficient to introduce only a new cultural trait, with male-only invaders. Further,

the introduction of the new cultural trait does not have to come from immigration;

spontaneous emergence of a new trait with the right mortality rates is sufficient to

avert extinction.

For the newly introduced male mortality trait, the necessary and sufficient

conditions for a type-II fixed point must still hold. In particular, the invader male

mortality must be less than half that of the resident (µ2 < µ1/2), otherwise the

invader mortality trait would not be sustainable;
√
µf +

√
2µ2 < 1/2 must hold to

have a positive discriminant for type-II fixed points; and finally, we have a maximum
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Figure 2.7: Population-density time series. (a) saving the resident allele
and mortality trait; (b) saving the resident mortality trait
only. The vertical dotted line indicates the time when the
invader was added to the system, at 0.05 density for (a) males
only, (b) males and females. Parameters: (a) θ1 = 0.8, θ2 = 0.5
(not used), µ1 = 0.05, µ2 = 0.02, µf = 0.03 (here, F2=0 in the
final equilibrium); (b) θ1 = 0.2, θ2 = 0.8, µ1 = 0.01, µ2 = 0.05,
µf = 0.05 (here, F1=0 in the final equilibrium).

allowed invader mortality:

µ2 <
θ1 − θ2

1 − 4µf + 4θ1µf
8θ1

. (2.27)

The formula above is derived from Eq. (2.22).

Figure 2.7(a) shows an example of successful rescue of a declining resident

population. After the introduction of the new mortality trait, the population shows

positive growth immediately, and soon reaches a new, stable positive equilibrium.

It is important to note that we do not have conditions on the resident male

mortality for a type-II fixed point. Indeed, if we have sufficient invader males with

conditions listed above, then resident males may have any large mortality rates;

invader males alone can sustain the reproduction of females, ensuring a stable positive

equilibrium.

We also need to emphasize the importance of µ2 < µ1/2 condition in order

to avert extinction. If the resident mortality is too high, it is not sufficient for the

invader to have only slightly lower mortality, it must have less than half that of the
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resident (i.e., has to live and reproduce at least twice as long). This is the result of

our reproduction rules in the model; male offsprings of mating between F1 females

and M2 males only attain the invader’s trait (and thus replenish M2 males) with

probability 1/2.

Finally, we realize that introduction of new cultural/mortality traits can have

significant effects on ecological consequences, as well as sex-ratio evolution. We

have seen that over a long time scale, repeated allelic substitutions can lead to

ever-increasing sex ratios, and thus eventual extinction, which is not prevented by

our model. However, when the sex ratio becomes too large and unsustainable, we

can equivalently say that the male mortality is too high for that particular sex ratio.

Extinction can be averted, and thus the evolution of ever-increasing sex ratios can

be delayed, by introduction of a new cultural trait with significantly lower mortality.

2.4.2 Saving Only the Cultural Trait

If our goal is limited to ensuring the presence of the resident male mortality trait

in a positive equilibrium (but not the female sex-ratio allele), then we can aim for a

type-II fixed point where the invader females exclude the resident females (F1 = 0).

Naturally, saving both traits is still a possible solution (see the previous section),

but the F1 = 0 case extends the range of parameter space where the population (or

at least, its cultural/mortality trait) can be saved.

Due to symmetry, we can exchange the roles of resident and invader, for the

purpose of establishing the necessary conditions of our desired outcome. Resident

males coexisting with invader males and females is identical to having a resident

group resisting an invading female allele, but coexisting with its males [see Section

2.3.2 and Fig. 2.6(d)]. However, the restriction that the resident (here, the invader)

has to be stable if left alone in the environment can be lifted; it is now possible

to invade the unstable resident with an unstable invader, which together can still

coexist and survive.

From Section 2.3.2, the necessary conditions for a type-II fixed point with

F1 = 0 are: θ2 > θ1,
√
µf +

√
2µ1 < 1/2 and µ2/µ1 > 2. In addition, the sufficient

condition for the range of θ2 has to hold: θ̃c1(µf , µ1) < θ2 < θ̃c2(µf , µ1) [see Eq. (2.22)].
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Notice, that these conditions do not refer to the stability of the resident (since resident

stability depends on θ1 being in the correct range, not θ2), again emphasizing that for

a stable coexistence of mortality traits the resident or the invader could be unstable

if left alone in the environment.

Figure 2.7(b) shows a scenario where only the resident male mortality trait is

saved in coexistence with the invader. As the invader is introduced, their density

quickly rises, while the density of the resident females drop to zero even faster

than before introduction. The system quickly reaches equilibrium, where resident

males have a positive density. Also note that both resident and invader groups have

parameters that would make them unstable alone.

2.4.3 Density Threshold of Intervention

There is a density threshold for the resident population, above which it is not

too late to introduce the invader, and save the resident cultural/mortality trait,

with or without the females carrying the sex-ratio allele. Accordingly, there is a

limited time, before the declining population density drops below this threshold.

Essentially, the invader population has to be introduced (with the necessary initial

density levels) such that the dynamics is still within the attraction basin of the

type-II fixed point that we want to reach. However, finding the edge of this attraction

basin (i.e., the separatrix), which is essentially the Allee threshold for the type-II

coexistence, is rather difficult, as it depends on the initial densities of both resident

and invader groups (at the time of introducing the invader), thus it resides in a

four-dimensional phase space. Nevertheless, it is possible, if necessary, to find this

threshold numerically, with arbitrary precision. Note, that in our experiments

[Fig. 2.7], given the right parameters, we used simple trial-and-error to find the

time when introduction of the invader resulted in the desired coexistence, and not

eventual extinction.

2.5 Spatial Invasion

2.5.1 Invading to Open Habitat: The Critical Radius

Ecological invasion often has a distinctly spatial character [1, 2]. Therefore, we

extend our model beyond the assumption of homogeneous mixing, and introduce
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spatial detail by analyzing the model’s reaction-diffusion extension.

Equations (2.1) assume that each individual encounters any potential mate at

the same average rate, i.e., homogeneous mixing, which is a strong simplification

for most organisms. Mating encounters ordinarily occur more frequently between

nearby, than between distant pairs. Spatially structured mating can be especially

important during ecological invasion, because introduced invaders often cluster

locally [1–3,147,148]. To consider these effects, we assume a two-dimensional habitat

with local mating and random mobility of individuals. We generalize Eqs. (2.1) as a

reaction-diffusion system [15] by replacing the homogeneous global densities with the

corresponding local densities (Fi(x), Mi(x)) at location x. To model dispersal, we

add a diffusion term (Ddiff∇2Fi(x) and Ddiff∇2Mi(x) for group i) to the respective

equation of motion. Therefore, our spatial model is described by the following

equations:

∂tF1 = Ddiff∇2F1 + θ1 (1−N)F1 (M1 +M2)− µfF1

∂tM1 = Ddiff∇2M1 − µ1M1 +

+ (1−N)

[
(1− θ1)F1

(
M1 +

M2

2

)
+ (1− θ2)F2

(
M1

2

)]
∂tF2 = Ddiff∇2F2 + θ2 (1−N)F2 (M1 +M2)− µfF2

∂tM2 = Ddiff∇2M2 − µ2M2 +

+ (1−N)

[
(1− θ2)F2

(
M1

2
+M2

)
+ (1− θ1)F1

(
M2

2

)]
. (2.28)

To integrate the spatial model numerically, we discretize the partial differential

equations (PDEs) to ODE equations (based on the Method of Lines technique [149])

on a rectangular grid of size 400×400 (representing an area of 100×100 units), using

Neumann boundary conditions. We integrate the resulting ODEs using an explicit

Euler time stepping, for which we use a sufficiently small time step (∆t = 0.01). These

parameters allow us to use diffusion coefficients as large as 2.5 without producing

finite-size effects, or instability. For the spatial model, we define global equilibria

with the stopping condition ε = 10−6.

Note, that our spatial, but deterministic reaction-diffusion equations still

maintain an essential (local) “mean-field character” (in the statistical physics sense
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Figure 2.8: Unsuccessful spatial persistence of a single group attempting
to spread in an open (empty) habitat. The initial radius is
less than the critical radius (R0 = 4.5 < Rc = 5.1). Simulation
time: (a) t = 100, (b) t = 150, (c) t = 300. Parameters: θ = 0.5,
µf = 0.02, µm = 0.03, Ddiff = 1.0.

and terminology) in that all correlation functions are still factorized into products

of concentrations [150, 151]. A stochastic, spatial individual-based model, or its

Langevin-type stochastic reaction-diffusion analogue (not addressed in this work)

may, in principle, lead to different behaviors [152,153]. For example, the region of

persistence in the case of a single-group two-sex population becomes significantly

narrower in a stochastic lattice-based model [130].

Successful invasion in spatial environments ordinarily requires that an initial

invader cluster have some minimal size for further growth [2, 3, 147, 154]. This

criterion may be due to an Allee effect [154] or inherent geometrical constraints on

cluster expansion [3]. For systems exhibiting the Allee effect under homogeneous

mixing, one can specify this minimal cluster size as the critical radius (Rc) required

for spatial invasion. Assuming radially symmetric growth, one expects Rc ∼
√
Ddiff ,

where Ddiff is the diffusion coefficient [154]. For simplicity, we take Ddiff as a constant

across all individuals. The first goal of our spatial analysis was to confirm this scaling

relationship for the critical radius when a single group is introduced in an open

(unoccupied) habitat.

For spatial invasion in an open habitat, individuals diffusing away from the

perimeter of the invader cluster encounter mate densities too low for population

increase, given the Allee effect (i.e., extinction is stable). A small invader cluster
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Figure 2.9: Successful spatial persistence of a single group spreading in
an open (empty) habitat. The initial radius is greater than
the critical radius (R0 = 5.5 > Rc = 5.1). Simulation time: (a)
t = 100, (b) t = 300, (c) t = 600. Parameters: θ = 0.5, µf = 0.02,
µm = 0.03, Ddiff = 1.0.

can shrink as a result. A cluster size exceeding the critical radius generates interior

densities sufficient to drive cluster expansion. The critical radius depends on both

density inside the cluster and the diffusion coefficient. Therefore, calculating a

critical radius demands specifying initial densities within the circular cluster. We

noted that as we chose densities closer to, but exceeding, the Allee threshold of

the homogenous-mixing case, the critical radius increased. Therefore, a reasonable

(deterministic) choice is the stationary density of the non-spatial model, which we

can calculate, given the female ratio and sex-specific mortality rates [see Eq. (2.8)].

We found the critical radius using bisection method with the initial interval

of R ∈ [1, 20]. At each step, a simulation runs with a particular initial radius, until

all densities at all grid points come to a stationary state (where all time derivatives

are less than ε = 10−6). In this final state either all grid points have the positive,

stationary densities of the non-spatial model, or all have zero densities. The resolution

of the grid (4 cells/unit distance) and the discretization of a circle on a rectangular

grid allow us to measure non-integer radii. Time evolution of a shrinking (R<Rc)

and a successfully growing, invading population (R>Rc) are illustrated in Figs. 2.8

and 2.9, respectively.

We obtained the critical radius for various diffusion coefficients, at certain

fixed set of parameters [Fig. 2.10]. As anticipated [154], the results confirm that the

critical radius is proportional to the square root of the diffusion coefficient.
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Figure 2.10: Scaling of the critical radius in single group dynamics. The
line shown is a fitting using minimum least squares, with a
correlation value of 0.99997. Parameters: θ = 0.5, µf = 0.02,
µm = 0.03.

2.5.2 Spatial Invasion of a Resident Population

Our goal here is to ascertain if there is a critical radius for successful invasion

when invaders can mate with residents in an occupied habitat. We initiate simulations

differently than in the open-habitat case. Here, every grid point is initialized to the

stationary density of the resident group. Then, we introduce the invader within a

circle of a given radius, at a small density. The simulation runs until all grid points

come to a stationary state (where all time derivatives are less than 10−6).

We find that no matter how small we set the invader density and cluster

radius, the result is always identical to the homogeneously mixed case. That is, the

allele with the higher female ratio persists, and the ecological impact of the winning

female ratio depends on the male mortality rates. Male cultural traits may coexist

(type-II fixed point), or both females and males of the lower female-ratio group go

extinct (type-I fixed point). Figure 2.11 shows a scenario where the invader has the

same parameters as the open-habitat invasion in Fig. 2.8. However, here the result
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Figure 2.11: Spatial invasion of a stable resident population. The initial
radius is less than the critical radius (R0 = 4.5 < R = 5.1) for
invasion into an open habitat. For clarity, only the invaders’
density is shown. Simulation time: (a) t = 100, (b) t = 450,
(c) t = 820. Parameters: θ1 = 0.3, θ2 = 0.5, µf = 0.02, µ1 = µ2 =
0.03, Ddiff = 1.0.

is different, because of the presence of the resident population. The invader can

(effectively) exploit the resident population as mates, enabling the invader to spread

successfully and eventually exclude the resident.

We understand the absence of a critical radius in the resident-occupied environ-

ment by considering cases where even an infinitesimal invader density can completely

exclude the resident in the homogenously mixed case. In the worst-case scenario

(for the invading allele and culture), we introduce only a small density of invaders

at only a single grid point, with a high diffusion rate. Then, diffusion spreads the

invader to all grid points, making its density extremely small, but greater than zero.

However, this is enough for successful invasion at every grid point, independently

of other locations, as we noted in the model with global mixing. If we introduce

a greater density of invaders, with slower diffusion, then the invader can quickly

overtake the local area before spreading out as a diffusive front. The eventual result

will be the same. Hence we conclude that there is no critical radius for invasion with

diffusion, if a resident population already occupies the habitat.
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2.6 Discussion and Conclusions

Our population dynamics differs from models for gene-culture coevolution,

where different alleles and cultural traits directly affect each other’s evolution [53].

Our model’s cultural trait directly influences the resident’s population density and

the invader’s growth rate when rare; female ratios and male mortalities interactively

drive the invader’s dynamics. We do not assume functional dependence between the

genetic and cultural traits. Rather, we evaluate consequences of the feasible range of

male-mortality rate combinations for the entire range of female ratio combinations

(resident and invader).

Most models of sex ratio evolution, whether analyzed as evolutionarily stable

sex allocation [128, 131] or developed with population-genetic detail [43], assume

that a parent is related symmetrically to female and male offspring. Hamilton [48]

noted that sex-linked inheritance of a gene for sex ratio breaks this symmetry, and

extraordinary sex ratios can evolve as a consequence. Frank [155] summarizes effects

of asymmetric relatedness to offspring by sex, and cites several studies where this

asymmetry is correlated with strongly biased investment in the sexes [156]. Our

results specify how the degree of bias can interact with a between-sex mortality

difference to influence the population dynamic consequences of sex ratio evolution.

Tainaka et al. [130] and Nitta et al. [157] developed spatially detailed models

to study how sex ratio might affect population persistence. For successful mating,

their model requires that at least one fertile individual of each sex occupy a site

neighboring an empty site (where the offspring is placed). At the scale of individuals,

the dynamics is the simplest generalization of the contact process [158–160] that can

capture both two-sex reproduction and preemptive competition [1, 2, 148]. Given

female and male mortality rates, they find the sex ratio maximizing population

density, and note that sex ratios differing too much from this singular value lead to

population extinction [130]. Compared to the mean-field result, the extinction effect

due to biased sex ratio sharpens in simulation of the stochastic, lattice-based model;

the range of sex ratios producing population persistence becomes quite narrow. Since

mating pairs form locally, biasing the sex ratio rapidly diminishes the chance that

an open site will be neighbored by one individual of each sex. So, demographic
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stochasticity may lead to extinction once sex ratio is biased, and genetic drift may

permit biased sex ratios to evolve even when bias is selectively disfavored [161].

Our study generalizes the model of Tainaka et al. [130] by including between-sex

differences in mortality and detailing outcomes of competition between different

female ratios. Our model limits expression of sex ratio to the heterogametic sex,

so that stronger bias in sex allocation has a competitive advantage. Our results

elucidate the ecological effects of interaction among the degree of sex ratio bias and

sex-specific mortality for competitive/cultural invasion and demographic stability. In

the simplest case, an introduced female allocation and associated cultural trait, male

mortality, invades and excludes the resident allele and culture. Complete exclusion

requires only that the invaders have the higher female allocation and that their

male mortality rate is lower than twice that of the resident males. If the invader’s

male mortality rate is large enough to exceed this limit, but the difference in female

allocation remains, the resident culture (but not the resident allele) survives and

coexists with the invader’s culture.

Our analysis also identified an interesting invasion-to-extinction scenario. A

group with the greater female allocation and greater male mortality (compared to

the demographically stable resident) cannot invade an empty environment. Yet it

invades and excludes the resident, and then goes extinct, because of its high female

ratio. Since the invaders can mate with the residents, they effectively exploit the

resident group in the early phase of invasion and, when sufficiently numerous, drive

the resident extinct. Thereafter, a marriage squeeze leaves the invader declining

to extinction. This type of outcome, where sex ratio and an Allee effect can

push a population to extinction, may have applications in the management of pest

populations [134]. Evolutionarily, the demographic consequences of sex ratio bias

may favor suppression of sex-ratio distorters [48], and may promote (or be tolerated

by) clonal reproduction [162].



CHAPTER 3

ECOLOGICAL RESTORATION AT MINIMUM COST

Ecological restoration aims to replenish an ecosystem’s biodiversity, often responding

to human-induced losses of indigenous species [30,31]. When ecosystem managers

reintroduce a species to its former habitat, the restoration effort’s success is ordinarily

defined by combined ecological and economic criteria [32]. Similarly, optimizing

biological control programs may integrate impact on the target species with costs of

deploying the control agent [33].

We envision restoration of a single species whose population dynamics depends

on the density of each sex [163]. Before evaluating costs, we must identify those spatial

distributions of the initial population that assure successful restoration. Suppose

that we initiate restoration with a single spatial cluster, within which individuals are

distributed at a uniform density. Then we must find the “critical cluster” size, the

minimal area the species must occupy to sustain positive population growth. Analysis

of the critical-cluster criterion has advanced understanding of spatial systems in

both physics [59–61] and ecology [1–3, 62]. However, if ecosystem managers can vary

initial densities according to location, non-uniform spatial distributions might reduce

restoration cost. Given multiple initial population distributions assuring sustained

population increase, the most preferred option should minimize cost. Our study

investigates how the minimum cost of successful restoration depends directly on

spatial pattern, and how the optimal pattern depends on sex ratio, and on sex-specific

mortality rates.

In this context, we model a species’ restoration as a spatially detailed, one-

dimensional, two-sex reaction-diffusion system; specifically, we utilize the model

that we have thoroughly analyzed in the previous chapter, as it provides all the

necessary details we need, and we can take advantage of existing results. Here,

we optimize the initial densities and spatial distributions of the sexes to minimize

Portions of this chapter previously appeared as: F. Molnár Jr., C. Caragine, T. Caraco, and G.
Korniss, “Restoration Ecology: Two-Sex Dynamics and Cost Minimization,” PLoS One 8, e77332
(2013).
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the cost of restoring the species to its positive, stable (homogeneous) equilibrium

density throughout a habitat. Generally, the prototype of such models is the Fisher-

Kolmogorov equation [49,164]

∂tu = D∇2u+ αu(1− u) , (3.1)

which describes the dynamics of single-sex populations with logistic growth and

diffusive dispersal. Our model extends the basic reaction-diffusion framework by

including sex-structured dynamics [130, 165, 166], where an Allee effect [154, 167]

generates an unstable fixed point between extinction and the habitat’s carrying

capacity.

In many natural and managed populations, per-capitum growth is reduced as

density becomes small (Allee effects [132–134]), induced by various behavioral, ecolog-

ical and genetic mechanisms [168]. For example, low population density may diminish

individual reproduction by reducing mate encounters, making prey capture more

difficult, or by leaving individuals more susceptible to their own predators [169,170].

In addition, these effects will be amplified if dispersal into unoccupied habitat reduces

local population density and generates negative population growh, as we have shown

in Section 2.5, thwarting restoration [154].

Generically, the cost of restoration can be defined as:

C = c∗
∫

Ω

u(r, t = 0)dr, (3.2)

where Ω represents the extent of the habitat, and u(r, t) is the population density

at location r. Without loss of generality, we can consider a constant per-capitum

cost (c∗ = 1). Mathematically, the restoration cost, which we seek to minimize, is a

functional of the initial population’s spatial distribution. The constraint requiring

population persistence cannot be expressed analytically, since that would require

solving the model’s partial differential equations exactly. Therefore, we utilize

numerical techniques to obtain the desired spatial distribution and the corresponding

minimum cost.
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In the previous chapter (in Section 2.5) we briefly analyzed the two-sex dynamics

with diffusive dispersal, and found that the critical radius (hence, critical cluster

size) for an initial population’s successful invasion of a two-dimensional habitat is

proportional to the square root of the diffusion coefficient, which was the same for

both sexes. This is the starting point here; we extend our study by considering the

dependence of the critical radius on all (non-symmetric) parameters. While our

reaction-diffusion model includes numerous simplifications for detailed application

to particular species, nevertheless it exhibits the essential ecological characteristics

of more complex two-sex models. Hence, implications of our results for restoration

will likely hold across a wide range of specific models.

We organize the rest of this chapter as follows. First, we recall the main features

of our sex-structured population dynamics from Section 2.5, and outline the analytic

and numerical methods we employ in this work. Then, we conduct a systematic

study of the restoration cost in multiple stages, considering different initial spatial

population distributions in each stage. Starting with a simplified, single-sex version

of our model, we derive an unstable, aperiodic stationary solution for the PDE, and

use it as initial distribution, resulting in a single-sex cost. We then continue with

the sex-structured model and analyze the way restoration cost depends on model

parameters, given a simple, homogeneous initial distribution of individuals inside a

cluster. We refer to this initial setup as “rectangular”, for its shape on a density vs.

location plot. We analyze this setup first with the constraint of equal cluster sizes for

both sexes; later we relax this constraint. In the third stage we allow any possible

shape of initial population distribution and study how the cost can be reduced as

a result. Finally, we discuss the minimum costs found in each stage, and conclude

which approach yields the most economical restoration.

3.1 Model and Methods

Recall that our model, as introduced in Section 2.1.2 (for a single group) has

three key parameters: the sex ratio θ at birth, and sex-specific mortality rates µm

and µf , for males and females, respectively. We assume that females and males

disperse independently by homogeneous diffusion (similarly to Section 2.5), and that
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males encounter females as a mass-action process, equivalent to random mating [135].

The fraction of matings leading to successful reproduction is proportional to the

unoccupied fraction of the environment, (1 −m − f) [130, 165, 166]. That is, the

population grows in a self-regulated manner. Hence, we have:

∂tf = Df∇2f + θ (1−m− f) fm− µff

∂tm = Dm∇2m+ (1− θ) (1−m− f) fm− µmm , (3.3)

where f(x, t) and m(x, t) denote the local densities of females and males, respectively.

Diffusion rates are described by coefficient Df for females and Dm for males. In

principle, by extending the above deterministic reaction-diffusion equations with

appropriate noise terms [171–173], the resulting stochastic partial differential (or

Langevin-type) equations [174] can capture the relevant macroscopic features of the

underlying spatial, stochastic individual-based model [153,175,176]. However, the

rigorous derivation of such stochastic partial differential equations can be rather

challenging [177–179].

We can transform Eq. (3.3) to interpret it as a single-sex model by making the

equations symmetric. To do so, we must let θ = 0.5, restrict µf = µm =: µ, Df =

Dm =: D and use the same initial density distributions for both males and females.

In this way, the two densities behave identically over time: f(x, t) = m(x, t) = u(x, t),

described by the following equation:

∂tu = D∇2u+
1

2
u2(1− 2u)− µu. (3.4)

This transformation bridges the single-sex and two-sex models; using the constants

in Eq. (3.4), we can directly compare results between models without rescaling

parameters. Note that the (cubic) local dynamics also retains an Allee effect.

We discriminate successful restoration from extinction by numerically integrat-

ing the model until it has converged to a global equilibrium. We use second-order

finite difference discretization for spatial derivatives and explicit Euler method for

integration over time [149], with a sufficiently small time-step. Integration stops

when all time-derivatives at all spatial coordinates are less than 10−6. Finally, the
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cost is obtained by multiplying the initial density and the initial cluster size, and

summed for males and females.

The prerequisite for analyzing the cost of restoration is to ensure the local

stability of successful restoration, i.e., a positive stable fixed point of local dynamics.

The necessary stability condition for the two-sex model [Eq. (3.3)] is:

1− 4

(
µf
θ

+
µm

1− θ

)
> 0, (3.5)

which we have derived in Section 2.2.1. Similarly, we can find the necessary stability

condition for the single-sex model [Eq. (3.4)]:

µ <
1

16
. (3.6)

These conditions provide us guidelines for selecting proper model parameters when

evaluating costs in the following sections.

3.2 Unstable Stationary Solutions

Our first approach to cost minimization selects suitable unstable stationary

solutions of the PDE model as initial population distributions [180]. They are good

candidates for initial spatial distributions, because they are “critical” solutions, in

the sense that given a small perturbation, they transform to a stable, spatially

homogeneous solution (positive perturbations result in positive homogeneous pop-

ulation densities and successful restoration, negative perturbations result in zero

densities and extinction). The cost associated with each stationary solution is found

by numerical integration of the density profile (i.e., the area under the curve).

Partial differential equations, such as Eqs. (3.3) and (3.4) have infinitely many

unstable stationary solutions [180]. We cannot find these solutions directly, but we

can derive analytical formulas for the relationship between the density and its spatial

derivative. For the single-sex model [Eq. (3.4)] we have the following definitions:

∂u

∂x
= v (3.7)

∂v

∂x
=
−1

D

(
1

2
u2(1− 2u)− µu

)
. (3.8)
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Using v, we change variables to write a first-order differential equation:

v(u)
∂v

∂u
=
−1

D

(
1

2
u2(1− 2u)− µu

)
. (3.9)

By separating variables, we obtain the following analytical solution:

v(u) = ±
√

3u4 − 2u3 + 6µu2 + 12DE

6D
, (3.10)

where E is a free parameter. The phase diagram for this equation is depicted in

Fig. 3.1(a), and its contents are summarized as follows.
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Figure 3.1: Stationary solutions in the single-sex model. (a) Phase plot of
stationary solutions, described by Eq. (3.10). D = 1.0, µ = 0.05.
The dots indicate fixed points, the thick lines indicate separa-
trices. Different curves correspond to different E parameters,
however, values of E were not chosen uniformly, for aesthetic
reasons. (b) The stationary solutions found by integrating
along the S2 separatrix, for multiple mortality rate parame-
ters; D = 1.0; x is distance form the habitat’s center.

The fixed points Pi (i ∈ {1, 2, 3}) correspond to homogeneous stationary

solutions. Naturally, these are also fixed points of the original equations [Eq. (3.4)],

but here they are only special cases of stationary solutions that do not vary spatially.

Hence v(u) = 0. P1 and P3 are saddle points (stable equilibrium nodes of the local

dynamics) corresponding to extinction (u = 0) and persistence (u > 0), respectively.

P2 is a center (unstable fixed point of the local dynamics) corresponding to the
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unstable equilibrium due to the local dynamics’ strong Allee effect.

Curves in Fig. 3.1(a) correspond to inhomogeneous stationary solutions that

can be classified by the value of the free parameter E in Eq. (3.10). Separatrices

S1, S2, and S3 correspond to the following values (with the same subscripts, see

Appendix A.1 for details):

E1 =
1

48D
(u∗2 − 2µ)(u∗2 − 6µ) (3.11)

E2 = 0 (3.12)

E3 =
1

24D
(u∗3)2(u∗3 − 6µ), (3.13)

where u∗1, u∗2, and u∗3 are the equilibrium densities of local dynamics, i.e., the values

of u corresponding to P1, P2, and P3, respectively:

u∗1 = 0, (3.14)

u∗2,3 =
1

4
∓
√

1

16
− µ. (3.15)

The closed elliptical curves around P2 represent periodic stationary solutions,

and they are the only ones of interest, because all other curves extend to infinitely

large negative or positive densities, neither having biological meaning.

Spatially periodic stationary solutions may offer candidate initial population

distributions. In principle, if minimum densities within each period were close to

zero, then we could select a segment of the solution, one period in length between two

density minima, and apply it as an initial spatial distribution. However, in our case,

as the minimum value of u goes to zero, the period of the solutions goes to infinity,

and the curves converge to the S2 separatrix, which corresponds to an aperiodic

stationary solution. The exact aperiodic shape of u(x) can be found by numerical

integration along S2, depicted in Fig. 3.1(b). Since u(x) converges to zero rapidly,

we can use it as an initial population distribution by taking its central segment

above an arbitrary small (biologically meaningful) density threshold. Because of the

fast convergence to zero, the length of the segment will be finite. In our study, we
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use 10−5 for the density threshold. Then, for every D and µ combination, we have

an exact shape, and an exact cost value defined as twice the area under the curve

(counting both males and females), denoted by Cstat. We will compare these costs

with those found by the other two methods described in the following subsections.

As an interesting observation, we note that contrary to intuition, the period

length of the stationary solution does not converge to zero as the solution curves

approach P2, see further details in Appendix A.2.

For the sex-structured model [Eq. 3.3] we cannot derive unstable stationary

solutions analytically. Instead, we study the scaling of restoration cost through a

numerical analysis of the critical cluster size and density, which are directly related

to the minimum cost of successful restoration.

3.3 Critical Cluster Size and Minimum Cost

Criticality of an initial cluster’s size occurs when density reduction due to

dispersal exactly balances the net effect of local natality and mortality. In two

dimensions the expanding population front’s speed is reduced in proportion to the

curvature of the cluster; therefore, it affects the critical cluster size. To avoid

confusing effects of curvature with other parameters’ impact on the critical cluster

size and, hence, the minimum cost, we restrict our study to one dimension.

3.3.1 Rectangular Setup

We begin our analysis of the critical cluster size by assuming a rectangular

initial setup, i.e., homogeneous initial spatial distribution inside the cluster with a

specific population density. This is the most obvious choice, for its mathematical

simplicity, and its plausible applicability (e.g., an animal population surrounded

by a fence before release can be modeled with a uniform spatial distribution). In

a rectangular setup there exists a critical cluster size, the smallest spatial extent

such that the given density achieves sustained positive growth. Symmetrically, for

a given cluster size, there is a critical initial density, the lowest density assuring

sustained population growth. In both cases, the critical limit also corresponds to

the minimum cost, since the cost is proportional to both cluster size and density.
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The exact, parameter-dependent values of these critical limits cannot be derived

analytically. Instead, we use bisection method on a wide initial range of possible

values, accomplished by testing each value for successful restoration vs. extinction.

We have four parameters describing the rectangular setup: f0, m0, lf , lm, which

represent female density, male density, length of space occupied by females, and

length of space occupied by males, respectively, at the initiation of restoration. Note,

that both female and male clusters are centered symmetrically. We shall refer to lf

and lm as the cluster sizes of the initial population. The cost of the initial state is

defined simply as:

Crect = f0 × lf +m0 × lm, (3.16)

and it is minimized by using the critical cluster sizes l∗m and l∗m, for males and females,

respectively. Note, that l∗m and l∗m are themselves dependent on initial densities

f0 and m0, as well as model parameters Df , Dm, µf , µm, and θ. Therefore, we

systematically study dependence of critical clusters on all parameters.

As an initial step, we analyze the dependence of critical cluster size on the

diffusion coefficients. We anticipate that the critical cluster size, i.e., critical length

is proportional to the square root of the diffusion coefficient, as we have observed

similar scaling in two-dimensions (Section 2.5). Our aim here is to show the same

behavior in the one-dimensional reaction-diffusion system, and to ask whether it

holds when male and female diffusion coefficients and cluster sizes differ.

Figure 3.2(a,b) shows that as long as we employ the same cluster size for males

and females, the critical cluster size has the expected scaling behavior l∗ ∼
√
D [154]

with respect to both male and female diffusion coefficients, even if one sex has a

fixed diffusion coefficient. Note, that it is sufficient to study the dependence on the

diffusion of one sex (here, males) while the other is fixed (here, females), because of

the symmetric construction of the model. Further, Fig. 3.2(c,d) indicates that fixing

the cluster size of one sex while measuring the critical cluster size of the other sex

with respect to diffusion coefficients yields non-trivial scaling. However, we observe

that a higher dispersal rate results in a larger critical cluster size, and, hence, a

larger restoration cost.
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Figure 3.2: Scaling of critical cluster sizes vs. diffusion coefficients, at
various parameter values. (a) l∗f = l∗m = l∗, Df = Dm = D; (b)
l∗f = l∗m = l∗, Df = 1.0; (c) l∗f = 1.0, Df = Dm = D; (d) l∗f =
1.0, Df = 1.0. In every case, initial (spatially homogeneous)
densities are fixed: f0 = m0 = 0.45.

3.3.2 Equal Cluster Sizes for Males and Females

Continuing our analysis of critical cluster sizes, we now assume that the critical

cluster sizes are equal for both sexes (l∗f = l∗m =: l∗); we relax this constraint later.

Even with the equal cluster-size constraint, initial densities for males and females

within that cluster may, in principle, differ. In practice, a density difference could be

implemented for most dioecious species. To find the best choice of initial density

values (with respect to minimizing cost), we aim to relate them to model parameters,

taken as given for the focal population.
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Naturally, the initial densities must exceed the Allee threshold (the unstable

fixed-point densities); otherwise, the population can never achieve positive growth.

Figure 3.3(a) shows that as the initial density is lowered, the critical cluster size

increases, and goes to infinity as we approach the Allee threshold.

Scaling of the cost, however, is non-trivial. We can always find the minimum

cost at a density somewhere in the vicinity of the positive stable fixed point of

the system, but always slightly below it. We understand this by considering the

dynamics just after initial introduction. If the population starts from its stationary

density (the stable, positive fixed point), then the local densities can only decrease,

due to diffusive dispersal. However, if the initial density is lowered slightly, then the

population has a chance to grow locally (in particular, at the center of the cluster)

before the effects of diffusion reach it, while the eventual spread through the habitat

remains the same. In essence, the cost is slightly lowered by handing over some of the

spreading effort to growth dynamics. However, as Fig. 3.3(b) and Fig. 3.4 show, this

advantage in cost-reduction is very small. We can conclude that using the stationary

densities as initial densities results in a sufficiently low cost. Also, it provides a good
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Figure 3.3: Scaling of (a) critical cluster length at introduction, and (b)
cost, with respect to initial population density. The total
density shown on the x axis is divided equally between males
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stationary densities of local dynamics. For both figures, Df =
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Figure 3.4: Cost landscape with respect to male and female densities.
The blue cross marks the stable stationary density values;
µf = 0.04, µm = 0.03, θ = 0.5, Df = Dm = 1.0.

choice of initial density based on model parameters, because the stationary densities

depend on local dynamics, which in turn depend on model parameters. The formulas

for the stationary densities are provided in Section 2.2.1.

We expand on the cost-minimizing property of stationary densities; we use

them as initial densities throughout the rest of our study. We continue with the

analysis of the critical cluster size’s dependence on model parameters. In particular,

we focus on the value of sex ratio at birth (θ), because both population stability and

equilibrium density depend on this single parameter. For population stability and

persistence, there is a range of permissible sex ratios, determined by the mortality

rates (see Section 2.2.1). Within this range, we defined the optimal sex ratio θ∗ as

the value maximizing the equilibrium population density:

θ∗ =
1

1 +
√
µm/µf

. (3.17)

Note, that when the mortality rates are equal, the optimal sex ratio is 0.5, which is

the parametrization, by definition, in the symmetric single-sex model.
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Figure 3.5: Scaling of (a) critical cluster size and (b) cost, with respect
to sex ratio, at different mortality rate combinations. Df =
Dm = 1.0. Rectangular initial populations were used with
stationary population densities.

We find that the smallest cluster size assuring restoration corresponds closely to

the optimal sex ratio, and that any small deviation from the optimal value causes a

small increase in the critical cluster size [Fig. 3.5(a)]. However, since the equilibrium

population densities (serving as initial densities) decrease at suboptimal sex ratios

(by definition; see Fig. 2.1), the combined effect on the cost is non-trivial. As we see

on Fig. 3.5(b), restoration cost is minimized at approximately the same sex ratios

minimizing the critical cluster size, indicating that the cluster size is more sensitive

to biased sex ratios than to equilibrium densities. We also find that strongly biased

sex ratios approaching the boundary of the stability range cause both cluster size

and restoration cost to diverge.

To complete the relationship between the sex ratio minimizing restoration cost

(θ̂) and the sex ratio that locally maximizes total equilibrium population density

(θ∗), we compare the two quantities numerically. For the latter we have an analytical

expression [Eq. (3.17)]. But our cost-minimizing sex ratios have only limited precision,

since for each value of θ we employed the bisection method to determine the critical

cluster size, which, in turn, determines the cost. Therefore we define a computational

error bound on θ̂ as the range of θ values that give critical cluster sizes within the

error range of the minimum point’s cluster size found by binary search.
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Figure 3.6: Comparison of density-maximizing and cost-minimizing sex
ratios. Density-maximizing sex ratio θ∗ [Eq. (3.17)] and nu-

merical bounds of cost-minimizing sex ratios θ̂ are calculated
using rectangular population distributions with stationary
initial densities, Df = Dm = 1.0, (a) µm = 0.01, (b) µm = 0.02,
(c) µm = 0.03.

Figure 3.6 offers comparison of the density-maximizing and cost-minimizing

sex ratios. We can conclude that the sex ratio maximizing equilibrium density is

identical to the sex ratio minimizing restoration cost, up to computational error.

3.3.3 Different Cluster Sizes for Males and Females

To this point, our results reflect the assumption that individuals of each sex

are introduced across the same extent of habitat. We now relax this constraint; that

is, we permit l∗f 6= l∗m, and ask whether the cost of restoration can be reduced by

introducing individuals into sex-specific lengths of habitat. We denote the ratio of

costs obtained by unequal and equal cluster sizes as:

crel =
Crect[l

∗
f 6= l∗m]

Crect[l∗f = l∗m]
(3.18)

The calculation of the sex-specific critical cluster sizes (l∗f and l∗m) requires

bivariate optimization, implemented in the following way. First, we calculate the

critical cluster size for males at a fixed cluster size for females using bisection method,

resulting in a cost with respect to the given female cluster size. Then, we use gradient

descent on this cost function to minimize it with respect to female cluster size. Note,

that during the gradient descent we always change the female cluster size by one
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lengths are equal. Common parameters: Df = Dm = 1.0. In-
dividual parameters: (a) µf = 0.01, (b) µf = 0.03.

unit of spatial grid resolution, and we keep moving toward the negative gradient

even if the local derivative is zero, because a small slope discretized on a grid can

result in zero local gradients before reaching the actual minimum point. Note also,

that we strongly rely on the convexity of the cost function with respect to male and

female cluster sizes.

Figure 3.7 presents our results. We find that optimality of the sex ratio plays

a central role in reducing the cost of restoration. In particular, when the sex ratio

equals the optimal (density-maximizing) value determined by mortality rates, the

minimum cost is achieved with equally sized clusters. No further cost reduction can

be achieved by allowing different cluster sizes for males and females. However, the

relative advantage of sex-specific cluster size increases as the sex ratio deviates from

the optimal value. If we consider that the absolute cost value diverges for strongly

biased sex ratios [see Fig. 3.5(b)] we conclude that in such cases the savings achieved

by adjusting the initial cluster sizes of each sex could be substantial.

3.4 Simulated Annealing

Finally, we relax all constraints on the shape of the initial population distribu-

tion; we optimize the spatially discretized shape for lowest cost under the constraint
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of successful restoration. Discretization is essential because it allows us to express

the cost as an n-dimensional function, instead of a functional, where n is the size

of the spatial grid. We use the same grid for shape discretization and numerical

PDE integration, for practical reasons. Given the discretization, we use simulated

annealing [181] for optimizing the shape function. This is essentially a Monte Carlo

simulation, where random changes of the initial spatial distribution (the shape func-

tion) are accepted or rejected according to a specified acceptance probability function,

such that the visited cost states have a Boltzmann-distribution characterized by a

temperature-like parameter. As this parameter is lowered, the expected value of the

cost is also lowered, eventually leading to the globally optimal, minimum cost state.

The specific steps of simulated annealing are provided in Appendix A.3.

In order to determine whether the constraint of successful restoration is satisfied

we must numerically integrate the model at every Monte Carlo step. To reduce

computational time, we accelerated the PDE integration with GPGPU computation

using CUDA [182,183], which locates the global equilibrium of the PDE in a fraction

of a second, giving a total time for the simulated annealing on the order of a few

hours.

At this stage our only assumption is that the cost-minimizing distributions

have a finite support, and we carry out the minimization accordingly. However, the

support of the function is allowed to grow or shrink by random shape changes during

simulated annealing; see Appendix A.3 for details.

By analyzing a series of minimum cost distributions obtained with simulated

annealing, we observe the following. First, the distributions indeed have a finite

support. Although we initialize them as such, the width of the optimal population

distribution tends to become smaller, rather than larger, during simulated annealing.

Typical final, optimized shapes are shown in Fig. 3.8. It is also remarkable that the

edges of the distributions go to zero very sharply; this property develops without

any influence inherent to the procedure.

Generally, the final result is an “arch”-shaped distribution, with similar dimen-

sions for females and males. Note that as the sex ratio diverges from its optimal

value, we observe a change in the sizes of the two initial population distributions
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Figure 3.8: Shapes of initial density distributions that minimize cost,
found by simulated annealing. The x axis shows discretiza-
tion grid coordinates; dx = 0.1 length unit per grid point.
Common parameters: Df = Dm = 1.0. (a) θ = 0.5, µf = 0.04,
µm = 0.04, (b) θ = 0.1, µf = 0.01, µm = 0.02, (c) θ = 0.7, µf = 0.04,
µm = 0.02.

and in the height of the peaks. These changes in spatial distributions occur roughly

in proportion to the system’s positive stationary densities [Fig. 3.8(b,c)]. Inter-

estingly, the height of the peaks always falls between the stationary densities and

the Allee threshold. Note that this shape provides the maximal rate of population

growth possible during the first moments of the simulation, hence it combats the

diffusion-amplified Allee effect most efficiently. Costs corresponding to the optimized

distributions are denoted CSA when we compare results with other methods.

3.5 Discussion and Conclusions

We examined three approaches to minimizing the cost of a species’ restoration;

the approaches differ in both ecological premises and mathematical methods. We

considered the aperiodic, spatially inhomogeneous solution to the single-sex dynamics

[Fig. 3.1(b)], critical cluster sizes of the rectangular initial setup [Fig. 3.5(a)], and

simulated annealing of sex-specific initial distributions [Fig. 3.8].

Summary comparisons of the minimum restoration cost achieved by the differ-

ent methods for the symmetric single sex model appear in Fig. 3.9. The aperiodic

stationary solution to the dynamics gives significantly larger cost than the other

approaches. Considering the shape of these distributions, they would likely prove dif-

ficult to implement in application. Restricting attention to the other two approaches,
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Figure 3.9: Comparison of minimum cost values in the symmetric model.
Cost values found by integrating the aperiodic stationary den-
sity (Cstat), by using rectangular shape with stable stationary
densities (Crect), and with simulated annealing (CSA) are pre-
sented. D = 1.0.

it is remarkable that simple rectangular distributions and the results of simulated

annealing yield essentially identical costs.

Figure 3.10 compares minimum costs for each critical-cluster analysis (i.e., a

single cluster size and sex-specific cluster sizes) and costs incurred under simulated

annealing. The critical cluster methods assume uniform initial population density

within cluster bounds; simulated annealing lets initial densities depend on spatial

location. The minimum cost varies little among methods as long as the sex ratio at

birth does not deviate too much from the optimal value (here, θ∗ = 0.5). As sex-ratio

bias increases, optimal sex-specific initial cluster sizes can lower the minimum cost

of restoration. Simulated annealing reduces restoration cost even further, but this

advantage becomes significant only at strongly biased (and biologically rare) sex

ratios, and implementing such spatial distributions in application could prove difficult,

negating any cost advantage. The same qualitative conclusions hold when we fix the

sex ratio and increase the difference between the sexes’ respective mortality rates,

because the mortality bias can also increase the difference between the optimal and

any fixed sex ratio.
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Figure 3.10: Comparison of minimum cost values in the two-sex model.
Comparison includes cost values found by using rectangular
shape with equal and unequal male and female cluster sizes,
and by simulated annealing. Df = Dm = 1.0, (a) µf = µm =
0.02, (b) µf = µm = 0.03.

Our model assumes deterministic dynamics, which does not account for ex-

tinction due to demographic stochasticity in populations near an extinction thresh-

old [161, 184]. This effect can be exaggerated when a population’s spatial dispersion

leaves dynamically independent clusters near critical size [1, 185].

We assume diffusive dispersal. Many plants, and some animals, disperse only

locally, i.e., the probability of long-distance dispersal is much lower than diffusion

assumes [186–188]. Dispersal limitation becomes important when the number of

discrete individuals is small [189], since random internal fluctuations can induce

population extinction. Given discreteness and stochasticity, neither of which has a

role in our cost-minimizing model, lattice-based results show that expected growth

from rarity demands greater propagation, relative to mortality, as mean dispersal

distance decreases [2, 190]. We also assume that no explicit interspecific interactions

affect the population during restoration. Species occupying the community to be

restored may facilitate restoration; for example, trees may attract birds that disperse

seeds of other tree species [191]. Alternatively, resident species may resist the

introduced species biotically [138, 192]. Interspecific interactions will often affect

the likelihood of restoration success, as well as the cost. Consequences of these
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interactions can sometimes be expressed abstractly through the introduced species’

positive equilibrium density; in other cases, successful restoration may demand

quantification of these interactions.

We assume an Allee effect arises from interaction of self-regulation with a birth

rate that depends on the density of each sex. In the context of restoration, a two-sex

dynamics may be essential to predicting spatial-expansion rate if dispersal differs

between sexes [47]. We model mating encounters via mass-action, which should be

reasonable for animals maintaining individual home ranges, or for dioecious plants

with random mating. Alternative “marriage functions” [44] apply to certain species,

particularly for polygynous or polyandrous mating systems.

We modeled a single species’ restoration only. Habitat restoration may attempt

to manage particular multi-species interactions, or may seek to promote growth

of many threatened species [30]. Our cost function ignores feedback of a species’

restoration on other biotic processes, or on economic stake-holders who incur post-

restoration costs [193].

Our results suggest some considerations for species restoration. First, if a species

disperses rapidly, individuals should be introduced concurrently, rather than serially.

The initial population will increase only if the density exceeds any Allee threshold,

and continues to do so as individuals disperse. Intuitively, the number/density of

individuals introduced should increase with their dispersal rate.

Second, restoration cost declines little by introducing a species at a density

below the (estimated) carrying capacity, unless the species disperses very slowly.

Third, a rectangular spatial distribution adds little or no proportional cost over the

ogive profile assumed in our simulated annealing method, as long as the sex ratio is

close to optimal. Spatial uniformity will likely prove more practical for most animals.

Given a uniform density close to the positive, stable equilibrium, restoration should

focus on an initial population whose expanse exceeds the critical-cluster size, which

(again) increases with dispersal rate.

Finally, adjusting frequencies of the sexes in an initial population may decrease

the cost of successful restoration. Of course, if one sex always limits population

growth, an excess of that sex promotes restoration. If population growth depends on



61

the density of each sex, introducing the sexes at different densities, or with different

cluster sizes, may prove advantageous. Sex ratio at birth may be unbiased, but

mortality rates may differ between sexes, particularly during dispersal. Adjusting

the sex ratio at introduction to match frequencies at positive equilibrium densities

should promote successful restoration, and reduce its cost.



CHAPTER 4

NUMERICAL TECHNIQUES FOR MODELING AND

ANALYZING COMPLEX NETWORKS

We have developed a number of numerical methods and software tools to facilitate

our research of dominating sets in scale-free networks, which we present here as

a prerequisite before starting our study. These methods include techniques for

efficiently storing heterogeneous networks (including scale-free networks) in memory,

adapting universal network construction methods for building model scale-free

networks with given parameters, and implementing efficient search algorithms to

find approximations to the minimum dominating set (MDS).

4.1 Hybrid Storage of Heterogeneous Networks

The most commonly used data structures for representing the connectivity

information of a network (graph) in computer memory are the adjacency list, and

the adjacency matrix. In an adjacency list, as the name suggests, there is a list

associated with each node that contains all nodes adjacent to that given node. For

sparse networks, this is a very compact and efficient data structure, and thus it is

used most commonly in applications. The adjacency matrix, on the other hand, is

an N ×N binary matrix (where N is the size of the network), where the values 1

and 0 at (i, j) indicate the presence or absence of an edge between nodes i and j,

respectively. This data structure is more suitable for particularly dense networks.

Both data structures support directed networks as well as undirected ones.

For an undirected network, every link is listed twice in an adjacency list, once for

Portions of this chapter previously appeared as: F. Molnár Jr., S. Sreenivasan, B. K. Szymanski,
and G. Korniss, “Minimum Dominating Sets in Scale-Free Network Ensembles,” Sci. Rep. 3, 1736
(2013).

Portions of this chapter previously appeared as: F. Molnár Jr., N. Derzsy, É. Czabarka, L.
Székely, B. K. Szymanski, and G. Korniss, “Dominating Scale-Free Networks Using Generalized
Probabilistic Methods,” Sci. Rep. 4, 6308 (2014).

Portions of this chapter to appear as: F. Molnár Jr., N. Derzsy, B. K. Szymanski, and G.
Korniss, “Building Damage-Resilient Dominating Sets in Complex Networks against Random and
Targeted Attacks,” (under review).
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each node that the link connects. Similarly, the adjacency matrix is symmetric. For

directed networks, directed links (arcs) are only listed on the adjacency list of the

source node (tail), listing the adjacent (head) node where the link points toward

(however, in some applications, storing links in the opposite direction may be more

practical); and the adjacency matrix is no longer symmetric, having a user-specified

convention on which of the row and column indices represent source and target nodes

(heads and tails) of the links.

Additional data, such as weights on nodes and links, can also be incorporated

into adjacency lists and adjacency matrices. In the former, for example, additional

information may be allocated for each node on the adjacency list; and for the latter,

the matrix may be real-valued, where any non-zero value indicates not just the

presence of an edge, but also its associated weight. However, more complex data,

either associated to nodes or links, are more suitably stored in a separate list or

dictionary.

Unfortunately, neither the adjacency list nor the adjacency matrix are a good

fit for storing heterogeneous networks, such as scale-free networks. In particular, due

to the heavy tail of the degree distribution (which is more pronounced when the

degree exponent is low), there are always a significant number of high-degree nodes

that require very long adjacency lists to store connectivity information. For these

nodes, an adjacency matrix would be more suitable. However, most nodes have low

degrees, and for them the adjacency list would be optimal. To be specific, the exact

threshold where the data structure should change from adjacency list to adjacency

matrix is when the node degree exceeds aN/b, where a is the number of bits needed

to store one element of the adjacency matrix, and b is the number of bits needed to

store an element in the adjacency list. Assuming that the adjacency matrix elements

can be stored as single bits, and nodes in the adjacency list are identified by 32-bit

integers, the threshold becomes N/32.

Our hybrid network storage technique is based on this principle. For each

node, the adjacent nodes are stored in a list when there are less than N/32 of them,

and stored in an adjacency bitvector (a single row of an adjacency matrix) when

their number exceeds N/32. The switch between storage formats is carried out
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Figure 4.1: Comparison of memory requirements for storing scale-free
networks using various data structures, with different power-
law degree exponents. Typical amounts of available memory
in personal computers and servers (as of 2014) are also shown
for comparison.

automatically as links are added to or removed from the network. When needed,

additional node data is stored in an array indexed by node IDs (32-bit integers from

0 to N − 1) and additional edge data is stored in a hashed dictionary where the

key is a 64-bit link ID calculated as the binary concatenation of the two node IDs

connected by the link (for undirected links, the higher 32 bits always contain the

smaller node ID). Note, a node ID is fixed for the lifetime of each node; IDs of deleted

nodes are stored in a list and reused when new nodes are added to the network.

The computational overhead caused by the storage format switch is minimal.

Since the number of steps needed to carry out the switch is exactly the same as the

number of links that was added previously to a given node, the time complexity of

adding one edge remains O(1) in amortized time. For rapidly changing networks,

where links are deleted as often as they are added, a switch back from adjacency

bitvector to list may be omitted for higher performance, or carried out only if the

available memory is running out, much like the garbage collection principle used in

many object-oriented programming languages.
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Memory requirements of storing scale-free networks using various data struc-

tures are compared in Fig. 4.1. It is clearly shown that for dense scale-free networks

(with low degree exponents), our hybrid storage method uses an order of magnitude

less memory than adjacency lists, and in general, our method is much more efficient

than the adjacency matrix. From another perspective, the maximum size of networks

that we can store and analyze on a computer with a fixed amount of memory is

increased by an order of magnitude for dense scale-free networks.

4.2 Scale-Free Network Sample Generation

The most commonly cited methods for generating scale-free networks are

variants of the preferential attachment model [65, 194, 195]. The main drawback

of these methods is that they do not provide sufficient control over all network

parameters. In order to have full control we must use universal methods that can

build networks from any given degree sequence.

The first step, regardless of the specific construction model, is to obtain a

degree sequence with the desired parameters. For this, we first create the (discrete)

power-law degree distribution (with prescribed cutoffs), and calculate the cumulative

distribution function (CDF). Then, using inverse sampling of the CDF, we generate

the degree sequence of the network. We find that using a discrete distribution, rather

than sampling degrees from a continuous distribution with rounding, results in much

better accuracy of achieving the desired power-law exponent, for scale-free networks.

Once we have a degree sequence, it is passed on to one of three construction

models as input. Each model (and thus the type of the resulting network) is identified

by a four-letter abbreviation as follows:

• CONF; abbreviation for the configuration model [196,197],

• HHMC; a Markov chain Monte Carlo method [198] initialized with Havel-

Hakimi construction [199,200],

• DKTB; a sequential construction algorithm capable of generating all possible

realizations of a given degree sequence, named after the authors [201]. The

algorithm is built on the underlying theorems proven in [202].
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Based on the maximum degree cutoff, we also define two subtypes of these

networks. Either the maximum cutoff is unrestricted, therefore kmax = N − 1,

or we introduce a structural cutoff, kmax =
√
N , to create uncorrelated scale-free

networks [203, 204] (see Chapter 5 for further details). In the latter case, having

the cutoff is indicated in the network type name as cCONF, cDKTB, and cHHMC.

Besides the different cutoff, the construction of these networks is identical to their

unrestricted cutoff versions, illustrated in Fig. 4.2, and detailed below.

In CONF networks, we first assign as many edge stubs (half-links) to each node

as prescribed by the degree of the node in the degree sequence. Then, we randomly

pick any two edge stubs (uniformly among all stubs) and connect them, forming a

link. We continue picking and connecting stubs until there are no more stubs left.

The result of this procedure is a multigraph; we reduce multiple links to single links,

and remove self-loops, to obtain a simple graph.

In HHMC networks, we first build a simple graph deterministically from the

degree sequence using the Havel-Hakimi algorithm. Although this fundamental

graph-theoretical method is designed to prove the graphicality of a degree sequence

(that is, whether a simple graph exists with the given degree sequence), it does so by

constructing the graph itself, thus we can use it as a starting point of a Markov chain

to obtain a random network sample [198]. In the Markov chain we obtain the next

realization of the degree sequence by carrying out a double edge swap, according to

the following procedure. We select two edges randomly (uniformly among all edges):

(uv) ∈ E and (xy) ∈ E with distinct nodes (u 6= x, u 6= y, v 6= x, v 6= y). These

edges would be deleted and replaced by new ones; either (ux) and (vy), or (uy) and

(vx) would become the new pair of edges. Considering that some of these edges may

already exist, making that swap configuration invalid, we have three possibilities: (1)

Both edge swap configurations are possible, then we pick one configuration randomly;

(2) only one configuration is possible, then we pick that one; (3) no swap is possible,

making the swap invalid. We proceed further only if we have a valid swap, otherwise,

we continue with a new edge swap attempt. After a sufficiently large number of

swaps we obtain a random (uniform, unbiased) sample from all possible realizations

of the degree sequence, because the Markov chain is irreducible [205], aperiodic, and
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Figure 4.2: Flow diagram of scale-free network sample generation.

symmetric [198]. Although a theoretical proof is yet to be found, many experiments

suggest that the Markov chain has short, O(E) mixing time [206–208]. We found that

attempting edge swaps four times the number of edges in the network is sufficient to

obtain a random (unbiased) network sample, see Appendix B.1.

In DKTB networks, we follow a complex construction procedure, detailed

in [201]. The main idea is to evaluate all possible choices before connecting the

next link of each node, considering that after forming the new link, the remaining

degree sequence (the unconnected edge stubs) must remain graphical. The procedure

also tracks what the probability was to make each choice of link formation, thus it

provides a statistical weighting factor at the end of the construction that tells us how

likely it was to obtain that particular sample of the given degree sequence. However,

calculation of this factor is difficult in practice, due to numerical overflows, caused

by the extremely large number of possible choices, even with a network size of a few

thousand nodes. Therefore, we ignore this weighting factor.

The final step of network generation is to ensure that we have a single connected

component. In principle, all three network generation methods can produce networks

with multiple components. However, due to the relatively high average degree we

use (8 < 〈k〉 < 16), the probability of having such networks is extremely low, as we

never observed disconnected components in CONF and DKTB networks. Regardless,

we always take the largest component of the resulting network (and remove the rest

of nodes and edges), to ensure that we have a single component with 100% certainty.
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In case of HHMC networks, the Havel-Hakimi algorithm can easily generate

multiple components. The most common scenario is one large component, and

numerous small fragments made of a few nodes. These can be deterministically

connected into a single component without altering the degree sequence by performing

well-picked double edge swaps: we must swap edges belonging to different components,

provided that at least one of the swapped edges are not bridges (edges, whose removal

would disconnect a component). We used Tarjan’s algorithm [209] to find bridges

that we needed to avoid.

In the original edge-mixing algorithm (in [198]) all edge swaps that would

disconnect the network are ignored. In practice, testing this condition at every edge

swap attempt is very expensive. Instead, we only check for multiple components after

the edge mixing process has finished, and if we find multiple components, we connect

them as we did before the random mixing. However, we never observed disconnected

components after the random mixing, this step is only executed to ensure a single

component with 100% certainty, just like taking the largest component after CONF

and DKTB methods does.

HHMC and DKTB methods are “exact methods” in the sense that they do not

alter the given degree sequence while constructing the network (unlike CONF, where

the removal of multiple links alters the degree sequence). Therefore, we must supply

these methods with graphical degree sequences, i.e., sequences for which it is assured

that a simple graph realizing that sequence exists. To ensure graphicality, we devised

a graphicality correction method (see algorithmic details in Appendix B.2), based

on the Havel-Hakimi algorithm. The goal of the original algorithm is to test the

graphicality of a degree sequence (while also building a possible network realization

to prove graphicality). It reports failure when some stubs of a node cannot be

connected to other nodes. Instead of reporting failure, we simply remove these stubs

from the degree sequence, making the remaining sequence graphical. This correction

precedes the network construction step for HHMC and DKTB networks, but it is

not needed for CONF networks, because every degree sequence is graphical for a

multigraph. We effectively remove any non-graphicality of the degree sequences

when we remove multiple links and self loops to create a simple graph.



69

1.50 1.75 2.00 2.25 2.50 2.75 3.00
-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05
 CONF
 DKTB
 HHMC

'-
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To check whether the desired power-law exponents were achieved in the gener-

ated scale-free networks, we used the maximum likelihood estimator (MLE) [210] to

measure actual values, denoted by γ′. It has been proven that MLE has superior

performance compared to linear regression of the degree distribution on double-

logarithmic plots [211,212]. We measured γ′ on the (kmin + 1, kmax) interval of the

degree distribution. Figure 4.3 demonstrates the accuracy of power-law exponents in

our generated networks. Although we can see a systematic error in the γ′ values of

CONF networks (possibly due to pruning multiple links), its value is very small, less

than 3% deviation from the desired γ value, and it can be ignored.

4.3 Greedy Algorithm for Finding Approximate MDS

Since finding the MDS is NP-hard, we approximate the exact solution by using

a sequential greedy algorithm [213]. Starting with an empty set D, at each step the

algorithm adds that node to D which yields the largest increase in the number of
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dominated nodes in the network. When there are multiple candidate nodes yielding

the maximal increase in domination, the algorithm chooses one randomly (uniformly

among candidates). These steps continue until all nodes are dominated and then the

algorithm terminates with D storing the approximated MDS. The greedy algorithm

yields a 1 + logN approximation to the size of MDS [87], and it has been also shown

in the same work that finding a sublogarithmic approximation is NP-hard.

In order to implement the greedy procedure in O(E) steps, we need to use

appropriate data structures. First, we define the dominating potential of a node as

the number of nodes that would become dominated if that node were selected at a

given step. The greedy selection is based on this quantity; a node with the highest

dominating potential is selected at every step. Initially, the dominating potential is

set to 1 + d(i), where d(i) is the degree of node i, because every node can dominate

all its neighbors and itself. We use bucket sort to order nodes by their dominating

potential in O(N) time (which we can do because dominating potentials are integers

in [0, N+1] range), where we use a hashed list for each bucket. This allows lookup by

value (by node ID), node addition and removal, and random node selection from any

bucket to be performed in O(1) amortized time, therefore it also allows to maintain

the order of nodes in O(1) time after any single change in a node’s dominating

potential. At every step of the algorithm, a node is selected into the dominating set,

and the dominating potential of the node itself, its neighbors, and second neighbors

are adjusted accordingly. Initially there are
∑

i:nodes 1 + d(i) = 2E + N = O(E)

dominating potentials. In every step, the affected nodes’ potentials are reduced by

one, except the selected node’s potential, which reduces to zero instantly. There are

at most 2E +N reductions of potentials, each completed in O(1) amortized time,

therefore the algorithm runs in O(E) amortized time.

4.4 Controlling the Average Degree

There is an exact relationship between four parameters of the degree distri-

bution: the power-law exponent γ, the minimum degree cutoff kmin, the maximum
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degree cutoff kmax, and the average degree 〈k〉, namely:

〈k〉 =

∫ kmax

kmin

Ck1−γdk, (4.1)

where C is the normalization for the degree distribution. Therefore, in order to control

the average degree, we must adjust one of the other three parameters. The degree

exponent is fixed as input, and although we have chosen to use either kmax = N−1 or

kmax =
√
N in our network subtypes, changing the maximum degree cutoff arbitrarily

would, in principle, change the very essence of a fat-tail distribution. Thus, we are

left with only one possible choice: the minimum degree cutoff, kmin.

The problem with using kmin to control 〈k〉 is that changing kmin even by 1

would change 〈k〉 significantly (note, kmin is an integer, since we are using discrete

degree distributions). Therefore, in order to have a very fine control over 〈k〉, we

also remove a certain fraction f of the lowest degrees from the degree distribution,

f ∈ [0, 1). The exact formula for the degree distribution is:

pK (k) =

C(1− f)k−γ if k = kmin

Ck−γ if kmin < k ≤ kmax

(4.2)

C =
[
(1− f)k−γmin + ζ (γ, 1 + kmin)− ζ (γ, 1 + kmax)

]−1
(4.3)

In principle, we can calculate the exact average degree using this distribution:

〈k〉 =
(f − 1)kmin + kγmin (ζ (γ − 1, kmax + 1)− ζ (γ − 1, kmin + 1))

f − 1 + kγmin (ζ (γ, kmax + 1)− ζ (γ, kmin + 1))
, (4.4)

where ζ (s, q) is the generalized Riemann zeta function:

ζ (s, q) =
∞∑
n=0

1

(q + n)s
. (4.5)

However, this formula has only a limited usefulness. The actual average degree in

our networks can be different, due to graphicality corrections, pruning of multiple

links and self-loops, and removal of small components during network construction.

In order to calibrate which kmin and f values result in which average degrees, we use
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high-accuracy empirical lookup tables. Essentially, we follow the principle of trial and

error: we blindly loop over all possible kmin and f values in a given range, generate

network samples, and record the achieved average degrees. This is illustrated in

Figure 4.4. Afterward, if we want to generate a network with a given 〈k〉, we look

for the appropriate kmin and f values that result in the wanted 〈k〉 value. We also

need to loop over many possible network sizes N , and a wide range of γ values

as well. The lookup table is therefore a multidimensional grid of known expected

average degrees. For network parameters between grid points we perform a numerical

sampling of this grid by linear interpolation. The resolution of the lookup table is

given in Table 4.1. Note, that for each N , γ, kmin and f values we generate multiple

network samples, and we record the average of average degrees among samples. The

number of samples is given in Table 4.2.
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Figure 4.4: A cross-section of the empirical lookup table, showing the
expectation of achieved average degrees vs. power-law expo-
nent parameters at various minimum degree cutoffs and re-
moved fraction of smallest degree nodes in CONF networks
with kmax = N − 1) and N = 5000.
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Table 4.1: Parameter range and resolution of the average degree lookup
tables created for all network subtypes.

Parameter Lower bound Upper bound Step

kmin 1 8 1

f 0.0 1.0 0.25

γ 1.5 4.0 0.05

N
100 1000 100
1000 10000 1000
10000 40000 5000

Table 4.2: Number of network samples generated for the average degree
lookup table at each γ, kmin and f values. Bounds of N are
inclusive.

Lower bound of N Upper bound of N Sample Count

100 1000 100

2000 10000 50

15000 30000 25

35000 40000 10
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Figure 4.5: Relationship between control parameters kmin and f , and the
achieved average degree, calculated from Eq. (4.4) for

√
N

cutoff networks with N = 5000. Here, kmin and f are combined
into a single parameter to show continuous curves.
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It is important to note that the relationship between the control parameters

(kmin and f) and the average degree is non-trivial, as shown in Figure 4.5. For clarity,

we show analytically obtained values for a perfect degree distribution according

to Eq. (4.3). We can find similar behavior for actual realized networks, but the

effect is more difficult to observe due to noise from sampling errors and graphicality

corrections.

We also checked the accuracy of the achieved average degrees, denoted by 〈k′〉,
comparing them to the desired values. Figure 4.6 demonstrates the accuracy of

average degrees in our generated networks.

4.5 Measuring and Controlling Assortativity

Assortativity describes mixing patterns in networks [118,119], which is essen-

tially a description of how likely it is to find edges between nodes of similar type. In

particular, nodes are commonly classified by their degree, thus we have assortative
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mixing (assortative networks) if nodes with similar degrees are more likely connected

to each other, and disassortative mixing (disassortative networks), if nodes with

significantly different degrees tend to be connected.

Assortativity is usually quantified as a correlation between the degrees of two

nodes. The classical assortativity coefficient, introduced by Newman [118], is simply

the Pearson correlation coefficient of the degrees of nodes connected by edges:

r =
M−1

∑
i jiki − [M−1

∑
i

1
2
(ji + ki)]

2

M−1
∑

i
1
2
(j2
i + k2

i )− [M−1
∑

i
1
2
(ji + ki)]2

, (4.6)

where M denotes the number of edges; ji and ki are the degrees of the nodes at the

end of the i-th edge. However, it has been shown recently [214] that the assortativity

coefficient lacks accuracy and it is dependent on network size. Following the recom-

mendation of [214], we measure network assortativity by Spearman’s ρ [215,216], a

rank-correlation metric, defined as:

ρrankn =

∑n
i=1(rXi − (n+ 1)/2)(rYi − (n+ 1)/2)√∑n

i=1(rXi − (n+ 1)/2)2
∑n

i (rYi − (n+ 1)/2)2
, (4.7)

where n is the network size, rXi and rYi are the ranks assigned to X and Y that are

the degrees of the two nodes found at the end of edge i. Spearman’s ρ is independent

of network size, allowing direct comparison of assortativity in networks of different

sizes, and it can reveal strong dependencies more efficiently.

Control over network assortativity can be achieved by rewiring the edges of

the network with a series of random, but selective double-edge swaps [198], similarly

to the technique used in HHMC network construction. A double-edge swap does

not change the degree sequence of a network, but it can potentially change its

assortativity.

Without any bias, a double-edge swap can either increase or decrease a network’s

assortativity, with approximately equal probabilities, leading to an uncorrelated

network in the steady state. The basis of our method is to bias the acceptance

of otherwise random and valid edge swaps, such that the introduced bias shifts
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assortativity toward a desired value. We introduce this bias in the following way:

Pr(accept) =


a if a > 0 and the swap is assortative,

−a if a < 0 and the swap is disassortative,

1− |a| else,

(4.8)

where a ∈ [−1, 1] is a predetermined control parameter that controls the acceptance

ratio of assortative and disassortative swaps; a swap is classified as assortative or

disassortative if it increases or decreases the network’s total assortativity, respectively.

We obtain the most disassortative network when a = −1, the most assortative network

when a = 1, and a = 0 corresponds to the case without bias, leading to uncorrelated

networks.

While we generally measure assortativity using Spearman’s ρ, we can track

the intermediate changes of assortativity during the edge-mixing process using the

assortativity coefficient [118,119], because as long as one measure increases, so does

the other (although the exact relationship is quite complex). The advantage of

tracking changes with the assortativity coefficient is that we can classify a swap only

by computing the change in assortativity caused by the two edges involved in the

swap, since other edges and nodes in the network are not affected. Tracking the

changes in Spearman’s ρ would require to track the changes in degree ranks, an

O(logN) calculation. In contrast, if we subtract the assortativity coefficients before

and after the proposed swap, we obtain a simple formula: dudx + dvdy ≥ dudv + dxdy,

if the assortativity increases after the swap (and the opposite is true if assortativity is

decreased, i.e. the swap is disassortative), where dx, dy, du, dz are the degrees of the

corresponding nodes, and the new edges are (ux) and (vy). Similarly for the other

swap configuration, where the new edges are (uy) and (vx), the swap is assortative if

dudy + dvdx ≥ dudv + dxdy, and disassortative otherwise. Therefore, we can classify

a swap in O(1) time.

Since the acceptance probability effectively lowers the number of accepted swaps

compared to the unbiased case, we must increase the number of swap attempts to

ensure that the network has reached a well-mixed state. Unlike HHMC construction,
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where we attempted edge-swaps four times the number of edges, here we attempt

ten times the number of edges in the network.

Using our guided edge-mixing we can reach a wide range of Spearman’s ρ

values for any given network; however, determining the correct a control parameter

for a desired ρ is nontrivial, see Fig. 4.7. Due to the random nature of the mixing

procedure the resulting value of ρ is a random variable with unknown (most likely

Gaussian) distribution, but it is clear that the mean of ρ monotonically increases

as a increases. Therefore, we carry out a randomized bisection search to find the

needed a for a desired ρ. The initial bounds are amin = −1 and amax = 1. The search

is controlled by statistics of the resulting ρ samples: for any particular a value we

run 24 edge-swap cycles (each with swap attempts ten times the number of edges)

and record the resulting mean µρ(a) and the confidence interval c50%
ρ (a) with 50%

two-sided confidence. These statistics of ρ are computed at the upper and lower

bounds of a, and in the middle of the range, amid = (amin + amax)/2. The new range

becomes the lower half of the current range, if µρ(amin) < ρwanted < µρ(amid); or it

becomes the upper half, if µρ(amid) < ρwanted < µρ(amax). We keep halfing the ranges

until the confidence intervals of the upper and lower bounds overlap; the middle

point of the last range gives the needed a value. The sample size and the confidence

interval have been selected such that they provide two decimal digit accuracy for ρ.

The overall search procedure is somewhat time consuming, but collecting statistics

can be parallelized, and for a given set of network parameters a has to be computed

only once.

The accuracy of this method is illustrated in Fig. 4.8. Larger sample sizes

imply higher accuracy, however it also makes the search process slower. On the other

hand, higher confidence level results in wider error bars for the achieved ρ, producing

less accurate final results, but faster search. It is important to note that each search

terminates when the bisection algorithm finds the upper and lower bounds with

overlapping confidence intervals. Thus the confidence intervals do not refer to the

accuracy of the bisection, instead they are used as a statistical tool for providing a

well-defined terminating condition for the bisection algorithm. Figures 4.9 and 4.10

provide additional information about the achieved network assortativity using our

method.
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Figure 4.7: Relationship between the assortativity control parameter a
and the achieved Spearman’s ρ values, for (a) CONF and
(b) cCONF networks. Parameters: N = 5000, γ = 2.5, 〈k〉 =
14. Data is averaged over 100 network samples. Error bars
indicate the sample standard deviation.

-1.0 -0.5 0.0 0.5 1.0
-0.0075

-0.0050

-0.0025

0.0000

0.0025

0.0050

0.0075

-1.0 -0.5 0.0 0.5 1.0
-0.075

-0.050

-0.025

0.000

0.025

0.050

0.075

accuracy of 0.01

 ρ
desired

 ρ
a
c
h
ie

v
e
d
 −

 ρ
d
e
s
ir
e
d

s
a

m
p

le
 s

iz
e

c
o

n
fi
d

e
n

c
e

12, 95%

12, 80%

12, 50%

24, 50%

 

 

     (a) CONF                                           (b) cCONF

12, 95%

12, 80%

12, 50%

24, 50%

 

 

ρ a
c
h
ie

v
e
d
 −

 ρ
d
e
s
ir
e
d

ρ
desired

s
a

m
p

le
 s

iz
e

c
o

n
fi
d

e
n

c
e

accuracy of 0.05

Figure 4.8: Controlling Spearman’s ρ with randomized bisection method,
using various sample sizes and confidence intervals of ρ used
internally at each bisection step. The error bars show the
actual confidence of the finally achieved ρ values after com-
pleting the bisection, for 100 samples with 95% confidence
level. Network parameters are N = 2000, 〈k〉 = 14 and γ = 2.5.



79

-1.0 -0.5 0.0 0.5 1.0
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-1.0 -0.5 0.0 0.5 1.0
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

 N=1000
 N=2000
 N=3000
 N=4000
 N=5000

a

(a) CONF                                   (b) cCONF

 N=1000
 N=2000
 N=3000
 N=4000
 N=5000

a

Figure 4.9: Standard deviation of Spearman’s ρ achieved with controlled
edge-mixing, across many network realizations. Each data
point corresponds to a statistic of 2000 samples for each net-
work size; 〈k〉 = 14, γ = 2.5, measuring ρ only once for each
sample.

1 10 100 1000

10

100

5 6 7 8 91010 20 30 40 5060

10

15

20

25
30
35
40

  = 0.8
  = 0.4
  = 0.0
  = 0.4
  = 0.8

k
N
N

k

(a) CONF                                 (b) cCONF
  = 0.8
  = 0.4
  = 0.0
  = 0.4
  = 0.8

k
N
N

k

Figure 4.10: Average degree of nearest neighbor vs. node degree after
mixing edges for various desired ρ values. Each data point is
an averaged value over 100 network samples of size N = 2000,
γ = 2.5 and 〈k〉 = 14.



CHAPTER 5

SCALING OF MINIMUM DOMINATING SETS IN

SCALE-FREE NETWORKS

The ability to efficiently control, track, monitor, or detect the behavior nodes is a

central issue arising in complex networked systems. Assuming that nodes can control

or influence their nearest neighbors most efficiently, the solution often involves finding

a dominating set of a network. By definition, a dominating set of network (graph)

G with node set V is a subset of nodes S ⊆ V such that every node not in S is

adjacent to at least one node in S; a minimum dominating set (MDS) is a smallest

cardinality dominating set. Example problems in whose solution the MDS (or some

variant of it) has been shown to play a part include optimal sensor placement for

disease outbreak detection [217], controllability of networks [7,73,82], social influence

propagation [10,11], observability of power-grid stations [6], and finding high-impact

optimal subsets in protein interaction networks [23].

In particular, we focus on the properties of the MDS in scale-free networks

that are characterized by a power-law degree distribution (P (k) ∼ k−γ). These

networks constitute a class of stylized networks which bear strong resemblance to

several real-world networks including social, infrastructural and biological networks.

Typically, values of the power-law exponent γ lie in the range 2 < γ < 3 [218,219],

although there are few examples of networks with γ < 2 value; for example the

co-authorship network in high-energy physics [220], and some email networks [221].

Our first goal is to understand the scaling behavior of the size of MDS against

network parameters, in order to provide theoretical basis of the expected cost of

implementing network control using dominating sets.

The mathematical literature focusing on bounds of dominating sets is vast [222].

In most prior works (with the exception of [92] to be discussed below), the MDS has

not been studied systematically for scale-free networks over a significantly varying

Portions of this chapter previously appeared as: F. Molnár Jr., S. Sreenivasan, B. K. Szymanski,
and G. Korniss, “Minimum Dominating Sets in Scale-Free Network Ensembles,” Sci. Rep. 3, 1736
(2013).
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range of γ. For example, Cooper et al. [223] studied the behavior of MDS size on

the special class of scale-free networks generated by preferential attachment [65]

(corresponding to γ=3), and found that minimum dominating sets as well as minimum

h-dominating sets (where every node needs to be dominated at least h times) have

sizes that are bounded above and below by functions linear in N , where N is the

number of nodes in the network. Other studies have focused on MDS sizes for

random regular graphs and Erdős-Rényi (ER) [224] graphs. Zito [225] studied the

size of the minimum independent dominating set on r-regular random graphs (with

3 ≤ r ≤ 7) and showed that the size of this set (and therefore the MDS) is upper

bounded by a linear function of N . Recently, B́ıró et al. [226] improved the pre-factor

of the O(N) bound of the size of the MDS in r-regular graphs based on a greedy

algorithm [88–90, 227]. Wieland et al. [228] derived general bounds for dense ER

graphs (with fixed edge probability), showing that the MDS size scales as logN

(with no direct applicability to sparse graphs with fixed average degree).

A recent study by Nacher et al. [92] has focused on the behavior of the MDS

size on model scale-free networks with varying degree exponent, as well as empirical

networks. The authors employed the Havel-Hakimi algorithm [199,200] with random

(Monte-Carlo) edge swaps [198] (HHMC) for constructing synthetic networks, and

they used a binary integer programming method to obtain the MDS. They reported

that the MDS size decreases as γ is lowered, making heterogeneous networks very easy

to control. However, our study of a variety of scale-free network families suggests

a more complicated picture. In particular, we find that details of the network

generation process, and the choice of the maximum degree cutoff, bear an enormous

influence on the dependence of MDS size on γ, even when the average degree 〈k〉 is

kept fixed. The latter constraint is motivated by the need of comparing networks

(from the MDS perspective) with the same amount of “resources,” i.e., fixed average

edge-cost per node, or equivalently, fixed average degree in unweighted networks.

Naturally, for γ<2, and fixed the average degree, there is only a finite (but large)

parameter range in terms of γ and N with realizable networks. Nevertheless, it

is interesting to investigate how easy (or hard) it is to dominate networks from

various ensembles in this regime, motivated by the existence of such real-world
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networks [229,230]. On the other hand, when keeping the minimum degree fixed in

this regime, the number of edges increase faster than the number of nodes, and those

networks are becoming inherently easy to dominate. For γ>2, keeping the average or

the minimum degree fixed are equivalent constraints in the large network size limit.

In practice, one could imagine a scenario where rather than dominating all

nodes of the network, it is sufficient to dominate some (large) fraction of nodes. This

reduces to the problem of finding a partial minimum dominating set (pMDS) [231]

which is the smallest subset of nodes (and possibly a subset of the full MDS) such

that at least some given fraction of the nodes are either in the set or adjacent to a

node in this set. We investigate the scaling of both MDS and pMDS with respect to

the network size N .

5.1 Scaling with Network Size

5.1.1 Empirical Results

We start with a simple but thorough empirical analysis of MDS size using our

scale-free network generating methods (CONF, DKTB, and HHMC, see Section 4.2),

and the greedy MDS approximation algorithm (detailed in Section 4.3). We run a

sweep of network size N at various power-law exponent γ values, generating hundreds

of network realizations for each, and averaging the MDS size among them for each

parameter combination.

Analysis of MDS via ensemble averages is justified by our observation that the

MDS size obtained by the greedy algorithm for any single network follows a Gaussian

distribution, with at least an order of magnitude smaller standard deviation than the

standard deviation of MDS size among multiple network samples, which also follows

a Gaussian (see Appendix C.1 for details). Therefore, for any given network, we find

it sufficient to run the greedy algorithm five times to obtain a reliable estimate of

the average MDS size; then, these are averaged over all network realizations (of the

same type) to obtain an estimate of the mean greedily approximated MDS size.

We use two possible subclasses of each network class, according to the maximum

degree cutoff kmax. Either there is no explicit cutoff, having kmax = N−1 (where N is

the network size), or we use a structural cutoff kmax =
√
N , resulting in uncorrelated
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scale-free networks [203,204]. When we have the
√
N cutoff, we indicate it in the

name of network type as cCONF, cDKTB, or cHHMC, where c stands for cutoff.

As indicated in the results and in figures, the average degree of each individual

network is kept fixed at a predetermined value throughout all samples of each dataset.

Details on controlling the average degree are included in Section 4.4.

Figures 5.1(a)–(c) show the MDS size for networks without any explicit upper

cutoff on degree. For CONF networks, the MDS size scales linearly with N for all γ

values. In striking contrast, DKTB networks and HHMC networks show a marked

transition in the scaling behavior at γc ≈ 1.9, which we call domination transition.

For γ > γc, MDS size scales linearly with N , whereas for γ < γc, the MDS size

appears to lose its dependence on N in the asymptotic limit. Figures 5.1(a)–(c) focus

on a subset of all considered γ values, which range from γ = 1.6 to 3.0, to clearly

show the scaling transition for DKTB and HHMC networks.

Figures 5.1(d)–(f) show in contrast that with the structural degree cutoff,

(kmax =
√
N), for all network classes the MDS size scales linearly with N irrespective

of the γ value. Note also, that in this case the results for all three network types are

quantitatively identical.

5.1.2 Analytic Lower Bound on MDS Size

To better understand the domination transition, we can derive a lower bound

for the MDS size. For this, we consider a “best case scenario” for dominating

the network, that is, under the best circumstances (detailed below), we count how

many nodes are necessary at least to dominate all nodes in the network. In our

calculation we use the continuous probability density function fK(k) equivalent to

the discrete degree distribution, because using integrals instead of discrete sums

simplifies calculation, and the distinction disappears in the infinite network size limit.

For the “best case” domination we assume that neighborhoods of all high

degree nodes are disjoint sets (not overlapping), therefore each node with degree k

dominates k + 1 nodes (itself, and its neighbors). Having no overlaps means that

each dominator can be maximally efficient in covering (i.e., dominating) the largest

possible fraction of the network. To cover all nodes, we start picking dominators
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Figure 5.1: The size of MDS scaling with N , 〈k〉 = 14, for all network
types, averaged over 400 network realizations with 5 greedy
searches for each at every data point. The figure insets show
the same data on log-log scales. Error bars show 95% confi-
dence for all data points (however, they may be very small
and hidden by the larger symbols).
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in degree-ranked order (starting with the largest degree), and keep selecting them

until their theoretically maximal coverage includes all nodes of the network. The

number of nodes we have to select this way is the lower bound, because in reality,

node neighborhoods do overlap, leading to less efficient covering, thus requiring more

dominators to cover the entire network.

In order to find the lower bound, we need to find the degree threshold first,

above which all nodes must be selected in the theoretically best case to dominate all

nodes. This threshold is denoted by k∗ and expressed as:

k∗ := max

{
k′ :

∫ kmax

k′
N(k + 1)fK(k) dk ≥ N

}
. (5.1)

For any given degree threshold k′, the total number of nodes we expect to find, given

a power-law degree distribution, is:

l(k′) =

∫ kmax

k′
NfK(k) dk. (5.2)

Therefore, l(k∗) gives the lower bound for the size of MDS. Note, that these formulae

can be used with any degree distribution, and k∗ can always be found numerically.

Figure 5.2 shows the l(k∗) bounds for power-law distributions as a function of N

with 〈k〉 = 10.

There are multiple consequences of the lower bound’s scaling. For kmax = N−1

networks, the possibility of an O(N)-to-O(1) transition of MDS size is supported by

l(k∗) [Fig. 5.2]: it exhibits an O(1) behavior for γ < 2, while it progresses to a linear

scaling with N for γ > 2 [Fig. 5.2(a)], similar to the results of DKTB and HHMC

networks. For networks with kmax =
√
N , l(k∗) ∼

√
N when γ < 2 and l(k∗) ∼ N

when γ > 2. Note, however, that the convergence to the asymptotic behavior is

extremely slow for 2 < γ < 3 [see insets of Figs. 5.2(a) and (b)]. Thus, for the case

of structural cutoff, the lower bound indicates that the MDS size can never become

O(1) and we cannot expect a sharp scaling transition. Derivation of the asymptotic

behavior of l(k∗) is included in Appendix C.2.
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Figure 5.2: The scaling of the calculated lower bound of MDS size in
power-law distributions, for various power-law exponents,
〈k〉 = 10. (a) kmax = N − 1, (b) kmax =

√
N . Figure insets

show l(k∗) bounds on log-log scales. See Appendix C.2 for
details.

5.1.3 Scaling of Partial Dominating Sets

Next, we study the scaling behavior of the partial MDS size with N as we vary

the value of the required dominated fraction z. We present results for the DKTB

class of networks in Fig. 5.3; our findings are qualitatively similar for CONF and

HHMC network classes, and networks with kmax =
√
N , as shown in Appendix C.3.

Below a certain value of z = k̂max/N , where k̂max is the highest realized degree

in the network, the pMDS trivially contains only the node with highest degree. Apart

from these trivial cases, for z > k̂max/N , the size of the pMDS exhibits the same

scaling as the full MDS in the different γ regimes (Fig. C.3). In other words, DKTB

and HHMC networks display a transition in the scaling behavior of pMDS size from

linear dependence on N to virtually no dependence on N at γ ≈ 1.9, while CONF

networks always show a linear scaling of pMDS size with N .

For a baseline-comparison to the partial MDS size obtained by greedy algorithm,

we also study the expected number of nodes needed to dominate a given fraction

of the network using random node selection, giving a partial random dominating

set (pRDS). We run the random search five times on each realization to obtain an

expected RDS size. Figure 5.4 compares pRDS with pMDS, showing that a simple

random node selection gives approximately an order of magnitude larger dominating
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Figure 5.3: The size of partial MDS scaling with N , 〈k〉 = 14, averaged
over 400 samples, (a) DKTB, γ = 1.7, (b) DKTB, γ = 2.5, (c)
cDKTB, γ = 1.7, (d) cDKTB, γ = 2.5. The dominated fraction
of nodes is expressed as percentile of the network size.

set than the greedy method. Note also, that in order to reach full domination using

random node selection, we would need to include almost all nodes of the network in

the dominating set. Further, for reference, in Fig. 5.4 we also show the known upper

bound, obtained for optimized random selection of the dominating set (oRDS) [88]

but also applicable to the greedy algorithm [88,89,222], for a graph with minimum

degree kmin: |oRDS|≤N [1 − kmin(1 + kmin)−1−1/kmin ]. Note, that in our network

construction schemes with fixed average degree, kmin = kmin(γ, 〈k〉, N), hence the

small jumps in the above bound when plotted as a function of N for fixed γ and 〈k〉.
The properties of random dominating sets are further studied in Chapter 6.
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Figure 5.4: Comparison of partial MDS and partial RDS scaling with
N for DKTB (a,b) and cDKTB (c,d) networks (without and
with structural cutoff, respectively); 〈k〉 = 14, averaged over
400 samples. The dominated fraction of nodes is expressed
as a percentage of the network size. For reference, we also
show the upper bound (dashed lines) for an optimized ran-
dom dominating set (oRDS) [88,222] (see text).

5.2 Scaling with Power-Law Degree Exponent

To measure the dependence of MDS size on γ, we find the MDS for a fixed

network size of N = 5000 nodes. Results for various 〈k〉 values are presented in

Fig. 5.5(a) for networks with no structural cutoff, and in Fig. 5.5(b) for networks

with a structural cutoff.

We find a surprising trend in several cases. Perhaps, most intriguing is the

trend seen in the case of CONF networks where the MDS size appears to have a

non-monotonic dependence on γ. Traversing increasing γ values on a coarse scale,

the MDS size starts out large at low γ, reaches a global minimum in the range

1.9 < γ < 2.3, and then grows again as γ increases. However, generating network



89

1.5 2.0 2.5 3.0 3.5 4.0
0.00

0.02

0.04

0.06

0.08

0.01 0.1 1
0.01

0.1

 N=40000
 curve fit

|M
D

S|
 / 

N

c

|M
D

S|
 / 

N

 

 

 

1.5 2.0 2.5 3.0 3.5 4.0
0

100

200

300

400

500

600

700

 CONF <k>=8
 CONF <k>=11
 CONF <k>=14
 DKTB <k>=8
 DKTB <k>=11
 DKTB <k>=14
 HHMC <k>=8
 HHMC <k>=11
 HHMC <k>=14

|M
D
S|

1.5 2.0 2.5 3.0 3.5 4.0
400

500

600

700

800

900

 cCONF <k>=8
 cCONF <k>=11
 cCONF <k>=14
 cDKTB <k>=8
 cDKTB <k>=11
 cDKTB <k>=14
 cHHMC <k>=8
 cHHMC <k>=11
 cHHMC <k>=14

|M
D
S|

1.5 2.0 2.5 3.0 3.5 4.0
0.00

0.02

0.04

0.06

0.08

 N=1000
 N=2000
 N=3000
 N=4000
 N=5000
 N=8000
 N=15000
 N=40000

|M
D

S|
 / 

N

Figure 5.5: The size of MDS as a function of γ for various network types
and average degrees, N = 5000, averaged over 200 network
realizations with 5 greedy searches for each at every data
point. (a) for networks with no degree cutoff; (b) for networks
with the structural cutoff. (c) shows the scaled MDS size vs.
γ for HHMC networks with 〈k〉 = 14 for various system sizes.
(d) Scaled MDS size for the largest network and the best-fit
power-law (solid red curve) in the vicinity of (and above) the
transition point, |MDS|/N ∝ (γ − γc)

β with β ≈ 0.37. Inset:
same data as in (d) after shifting the horizontal axis and on
log-log scales.

samples with a finer resolution of γ values (∆γ = 0.01, reaching the resolution of

error between desired and achieved γ values), we also notice the existence of kinks

in addition to the large scale non-monotonicity.

By probing the dependence of MDS size on γ for DKTB and HHMC networks

at fine resolution similar to one used for CONF, we find only minor traces of kinks,

but they are within the error margin of MDS size. On a coarse scale, we find

quantitatively similar results for both network classes. The MDS size curve is flat

at very low values of γ, and then increases steadily beyond γ ≈ 1.8. When γ > 3,
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the MDS size of all three network types converge to the same value, indicating that

beyond this point the structure of these networks are very similar [Fig. 5.5(a)].

The dependence of MDS size on γ is strikingly different for networks with a

structural cutoff [Fig. 5.5(b)]. In this case, all three network classes show identical

results for given network parameters. For increasing γ values the size of MDS first

decreases, then reaches its minimum at approximately 2.5 < γ < 3.0, and increases

again when γ > 3. Since all three classes display almost indistinguishable results, we

can infer that these networks are structurally very similar. Kinks like those seen in

CONF networks are also observed here, but with a much smaller amplitude.

In the vicinity of (and above) the transition point, we also found that for

sufficiently large DKTB and HHMC networks [Fig. 5.5(c)], the scaled MDS size can

be reasonably well approximated with a power-law,

|MDS|
N

= const. · (γ − γc)β (5.3)

with β ≈ 0.37 [Fig. 5.5(d)].

5.3 Discussion and Conclusions

As demonstrated clearly by the results, the specific method used for generating

a network ensemble has a profound influence on the MDS size. This suggests that

there are distinctive features in the structures of networks generated by the different

classes. From the details of the generation methods, it might appear that DKTB

and HHMC classes produce networks that are similar in structure, and this is

certainly corroborated by our results. However, their distinction from networks in

the CONF class seems to disappear when a structural cutoff is introduced in the

degree distribution. Although we cannot rigorously demonstrate that particular

structural features are responsible for the observed scaling behavior, we conjecture

on the origin of the distinct behaviors.

It should be noted that Del Genio et al. [232] have shown the non-existence of

realizable graphs with a power-law degree sequence with 0 ≤ γ ≤ 2. However, as they

point out, their arguments refer to the situation where the prescribed degree sequence
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has to be perfectly satisfied. In our methods, networks with 1 ≤ γ ≤ 2 are realized by

removing some edge stubs from the degree sequence that cause non-graphicality. For

CONF networks, pruning of multiple links and self loops perform this task, while for

DKTB and HHMC networks, a Havel-Hakimi-based graphicality correction algorithm

is applied (see Section 4.2 and Appendix B.2). It is notable, that we can choose

appropriate parameters such that even after pruning, or graphicality-preserving stub

removal, we have a network whose degree distribution approximately fits the desired

power-law. As a result of these procedures, our networks in this range of γ are

not exact realizations of perfect power-law degree sequences, and therefore do not

contradict the fundamental results of [232].

When the structural cutoff is not imposed on the degree sequence, the non-

graphicality below γ = 2 plays an important role in the scaling transition of the

MDS size with N . When γ < 2, there are too many edge stubs in the prescribed

degree sequence, and some of them have to be removed to resolve non-graphicality.

Different network construction methods solve this problem differently. With respect

to MDS scaling behavior, the key difference is in the treatment of the highest

degrees. In case of CONF, the formation of multiple links is allowed during the

stub connection process, and the duplicate links are pruned later. Since the realized

multiple links predominantly connect stubs belonging to high-degree nodes with each

other [203,233], the large degrees of the hubs are effectively wasted in connections

that do not improve their potential to dominate. Furthermore, as a consequence, the

interconnections of low degree nodes become more dominant, forming a relatively

sparse web, which necessitates the inclusion of many nodes in the dominating

set, preventing it to become O(1). However, in case of the Havel-Hakimi-based

graphicality correction (used in HHMC and DKTB methods) the stubs of the highest

degree nodes are connected first, ensuring that these nodes are present in the network

as hubs. The MDS scaling transition can therefore be explained by the scaling of the

maximum realized degree (also known as the natural cutoff of the degree distribution),

k̂max ∼ N
1

γ−1 [203,234]. When γ < 2, the MDS size becomes O(1) because the largest

degree, and potentially the second and third largest degrees become O(N), and

the network is dominated by these nodes. In essence, we find that the domination
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transition is directly related to the underlying graphicality transition [232]: the same

underlying structural properties which are responsible for the graphicality transition

in the infinite network-size limit allow for the O(N)-to-O(1) domination transition

for large but finite DKTB and HHMC networks. In other words, those finite DKTB

and HHMC network realizations which happen to exist for γ < 2 can be dominated

by an O(1) MDS.

The small difference between our numerically observed value of the domination

transition at around γ ≈ 1.9 and the γ = 2 value of the graphicality transition [232]

might lie in finite-size effects and in the log(N) accuracy of the greedy algorithm

with respect to the size of the true MDS [Figs. 5.5(c) and (d)].
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Figure 5.6: Scaling of maximum realized degree k̂max with power-law ex-
ponent γ, for various network sizes. (a) theoretical expected
value from power-law distribution, (b) degree sequence with
graphicality correction (HHMC and DKTB networks), (c) de-
gree sequence after pruning multiple links (CONF networks).

The different treatment of largest degrees in different network classes can be

illustrated by plotting k̂max against γ, see Fig. 5.6. Note, that for the theoretical

value we need to derive and evaluate the exact formula from the degree distribution,

see Appendix C.4. Further, the markedly different structure of CONF networks

compared to HHMC and DKTB networks in the absence of a structural cutoff also

shows up in the network visualizations in Fig. 5.7.

In contrast, with the structural cutoff, networks generated using the three

different methods appear to share similar structure as can be seen in Fig. 5.8, from

the similar scaling of MDS size with N , and the dependence of MDS size on γ. The

restrictive kmax =
√
N cutoff precludes the scaling of MDS size from becoming O(1),

as shown by the l(k∗) lower bound in Fig. 5.2(b).
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Figure 5.7: Visualization of typical scale-free networks of each type with
kmax = N−1 at three different power-law exponent values, em-
bedded by the SFDP layout engine of Graphviz visualization
software [235]. In all networks, N = 1000 and 〈k〉 = 14; the
colored nodes belong to the MDS.

The non-monotonic behavior of the size of the MDS with γ (with the exception

of the DKTB and HHMC constructions with no maximum degree cutoff) are in

part the consequence of the stringent constraint of resources for domination (fixed

average degree, i.e., fixed number of edges for fixed N): for small and decreasing

values of γ, while maintaining a fixed average degree for a given network size N , the

minimum degree decreases, and there are O(N) number of such nodes. However, in
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Figure 5.8: Visualization of typical scale-free networks of each type with
kmax =

√
N at three different power-law exponent values, em-

bedded by the SFDP layout engine of Graphviz visualization
software [235]. In all networks, N = 1000 and 〈k〉 = 14; the
colored nodes belong to the MDS.

the DKTB and HHMC networks the largest hub can have O(N) links, and it has

the potential alone to connect to (and dominate) the nodes with the lowest degree,

hence the monotonic behavior with γ (and the transition to O(1) domination) for

these networks [Fig. 5.5(a)].

Kinks seen in the curves of MDS size when plotted against γ are the result of

controlling the average degree with very high precision. Smooth change of the control
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parameters introduces gradual changes in the network structure, however, the average

degree does not change smoothly (although it is monotonic; see Fig. 4.5 in Section 4.4).

Conversely, when we probe a range of γ values, we need a smooth control over the

average degree, requiring non-smooth changes in control parameters and hence in the

network structure. Therefore, we can expect that any structure-dependent quantity,

like the MDS size, will show kinks with respect to γ.

The results reported by Nacher et al. [92] suggest that for a given 〈k〉, decreasing

γ results in a monotonic lowering of the MDS size. However, they only studied

the HHMC method of network generation with a variable cutoff. By introducing a

well-defined structural cutoff, and in addition studying two other classes of networks,

we show that precise details of the network construction have a strong impact on

the trend in MDS size as γ is varied.

In summary, we have shown through extensive numerical experiments, that the

size of the minimum dominating set approximated by a greedy algorithm undergoes

a transition in its scaling with respect to N only for particular methods of network

construction in the absence of a structural cutoff. For the configuration model

construction, or the other construction methods with a structural cutoff, no such

transition is observed. However, intriguingly, in the presence of a structural cutoff,

the MDS size increases as γ is lowered below 2. Concerning real-world scale-free

networks, we conclude that it is not sufficient to have γ < 2 to have an easily

dominated (easily controllable) network; intricate details in the wiring of the network

must also be taken into consideration; in particular, the maximum realized node

degrees.



CHAPTER 6

DOMINATING SCALE-FREE NETWORKS USING

GENERALIZED PROBABILISTIC METHODS

In this chapter, we consider the problem of finding dominating sets with the additional

factor of local connectivity information availability (or lack thereof) that affects the

cost of selecting dominators. Most existing dominating set search methods require

full knowledge of network structure and connectivity patterns (i.e., adjacency matrix,

or equivalent adjacency information). This information may not be available in large

networks (over tens of millions of nodes and edges), and obtaining this information

involves additional expenses (in addition to actually running the dominating set

search method) that can ultimately lead to overall suboptimal costs. Moreover,

sophisticated search methods tend to have polynomial computational time complexity

with high orders in the number of nodes or edges, therefore their applicability to

large real networks is questionable. Our goal is to develop dominating set selection

strategies that satisfy the cost-efficiency demands in terms of required connectivity

information, computational complexity, and the size of the resulting dominating set.

We focus on scale-free networks, as most large networks with potential applications

of MDS (e.g., social, infrastructural, and communication networks) fall into this

category. Without full adjacency information, we must select nodes based solely

on their individual (local) properties, such as the node degree, and potentially a

limited amount of global network information, such as the number of nodes and

edges, average degree, and power-law degree exponent.

6.1 Probabilistic (Random) Dominating Sets (RDS)

The results of Alon and Spencer [88] provide a graph-theoretical approach to

find an upper bound for the MDS size, and as part of it they propose a probabilistic

Portions of this chapter previously appeared as: F. Molnár Jr., N. Derzsy, É. Czabarka, L.
Székely, B. K. Szymanski, and G. Korniss, “Dominating Scale-Free Networks Using Generalized
Probabilistic Methods,” Sci. Rep. 4, 6308 (2014).
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method for selecting dominator nodes. While their approach is theoretical, we can

carry out their method, numerically, to obtain a probabilistic dominating set, and

study its properties in scale-free networks.

Finding a probabilistic (random) dominating set (RDS) in a graph has the

following steps. First, we visit each node, and add it to an initially empty set X,

with probability p (a parameter chosen arbitrarily, p ∈ [0, 1]), independently of other

nodes. Then, the remaining nodes that are not in X nor adjacent to any node in X

are placed in set Y . The dominating set is obtained by X ∪ Y . Alon and Spencer

showed [88] that the expected size of this set is

|RDS| = |X|+ |Y | ≤ Np+N(1− p)kmin+1 , (6.1)

where kmin is the minimum degree and N is the number of nodes in the graph. By

differentiation of this formula with respect to p we can find the optimal p value that

minimizes |RDS| (the corresponding dominating set is denoted by oRDS; o stands

for optimal), which is then further bounded from above [88]:

|MDS| ≤ |oRDS| ≤ N [1− kmin(1 + kmin)−1−1/kmin ] . (6.2)

Our numerical results on scale-free network samples in comparison with the analytical

values are shown in Fig. 6.1 for a wide range of parameters (2 ≤ γ ≤ 4; 4 ≤ 〈k〉 ≤ 16).

We find that our numerically obtained RDS size is significantly lower than the

analytical one, for optimal p values. However, when p & 0.5 the size of the RDS

found numerically closely approaches the analytical curve. The difference we see can

be understood easily: The upper bound in Eq. (6.1) assumes the worst case, that

all nodes not dominated by the X set are nodes of the smallest degree. Thus, the

difference between their bound and the numerical results shows the relative number

of nodes whose neighbors are higher than minimum degree, yet not dominated. In

scale-free networks, we indeed expect to find a significant number of low-degree nodes

with high-degree neighbors (especially in disassortative networks), explaining our

observations.

An alternative strategy to random node selection (without adjacency infor-
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Figure 6.1: Comparison of the numerically computed probabilistic (ran-
dom) dominating set to its analytical estimate, its analytical
upper bound, the greedy minimum dominating set, and the
degree-ranked dominating set, for various network parame-
ters in cCONF networks. N = 5000, averaged over 100 network
samples.

mation) is to pick nodes in degree-ranked order, until the selection dominates all

nodes. This is called a degree-ranked dominating set (DDS). Although one may

expect DDS to be a better strategy, simply because high degree nodes can dominate

more neighbors, our results surprisingly show the opposite. As we compare the size

of RDS to DDS in Fig. 6.1, we find that DDS is outperformed by RDS for optimally

chosen p values, for every combination of network parameters.
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Figure 6.1 also shows the MDS approximation provided by the greedy method,

for comparison. Since the greedy method uses full adjacency information, it is not

surprising that it provides much smaller dominating sets than RDS or DDS.

6.2 Degree-Dependent Random Dominating Sets

In order to improve the results of RDS we have to consider that complex

networks are heterogeneous, and it would be beneficial to exploit this characteristic

in the probabilistic node selection strategy. Although we have seen that using only

high degree nodes for dominators (DDS) is a bad strategy, introducing a bias toward

high degree nodes while keeping the random nature of node selection could prove

beneficial. Therefore, we propose a novel degree-dependent probability function for

selecting nodes that are placed in set X:

pi = min

{
1, p

(
ki
kmax

)β}
, (6.3)

where ki is the degree of node i, kmax is the maximum degree in the network, and

p and β are parameters. Note that we no longer require p to be a probability but

rather a prefactor that can have any positive value. Similarly to the case of degree-

independent selection probability, set Y contains nodes that are not dominated by

X, and the ultimate result, RDS is obtained by X ∪ Y . Note, that when p > 1, we

can have pi = 1, in which case node i is surely selected.

Figure 6.2 compares RDS with degree-dependent and degree-independent node

selections for a wide range of β values (note, β = 0 is identical to the degree-

independent case). In agreement with our expectations, our results clearly show that

degree-dependent node selection provides a much smaller dominating set than the

simple degree-independent selection, and thus it also outperforms DDS by far. We

can also observe that as the β parameter is increased the smallest possible RDS size

decreases, and it approaches the greedily approximated MDS size. Notice however,

that for finding the smallest possible RDS the value of p has to increase as well.
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Figure 6.2: Size of random dominating sets (RDS) as a function of p
prefactor in the degree-dependent node selection probability
[Eq. (6.3)]. Data is averaged over 200 network samples and
20 repetitions of dominating set searches for each sample, in
cCONF networks with N = 5000.

6.3 Cutoff Dominating Sets (CDS)

Since the smallest RDS size obtained seems to become lower for ever increasing

β values, we expect to find the minimum with β → ∞. Notice, that in this case

all nodes with degree ki > kmaxp
−1/β are selected with probability 1 and nodes with

smaller degrees are selected with probability 0. Thus, we have a degree threshold,

κ ≡ kmaxp
−1/β that now deterministically decides whether nodes will be added to set
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X or not. We can use this κ to reparametrize the node selection probability in RDS

as well: Eq. (6.3) now becomes

pi = min

{
1,

(
k

κ

)β}
. (6.4)

This form shows even more explicitly that the β →∞ case transforms the proba-

bilistic selection into a deterministic one based on the κ degree cutoff. Therefore, we

call the final result a cutoff dominating set (CDS).

Figure 6.3 shows CDS in comparison with RDS for various β values. We can

see that CDS indeed provides the smallest dominating set size among probabilistic

methods, and when κ is optimal (i.e., it minimizes the size of CDS) the size of CDS

almost reaches the greedy MDS approximation. Considering how much simpler CDS

is compared to the greedy approximation, this result is quite remarkable.

In order to further verify the performance of CDS, we calculate it on real-world

network samples and compare it to RDS, as well as greedy MDS approximation

and DDS. We use scale-free networks from the Stanford large network dataset

collection [230], namely a snapshot of the peer-to-peer Gnutella network, and the

web graph of the University of Notre Dame (domain nd.edu). Figures 6.4 and 6.5

show these results. In both cases, we see the same behavior of CDS as in synthetic

networks: CDS reaches the smallest possible size of all probabilistic dominating sets,

approaching the greedy MDS approximation for optimal κ values.
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Figure 6.3: Comparison of the cutoff dominating set (CDS) to the greedy
minimum dominating set (MDS), the degree-ranked domi-
nating set (DDS), and degree-dependent random dominating
sets (RDS), for various network parameters in cCONF net-
works. N = 5000, averaged over 100 network samples.
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6.4 Analytical Estimates of RDS and CDS

Since both RDS and CDS require only the degree of each node to decide

whether to place that node in the X set, we can estimate the size of RDS and CDS

in the infinite network size limit using continuous degree distributions. In general,

we can estimate the size of any probabilistic dominating set in a network with any

degree distribution and degree correlations as follows:

〈DS〉
N

=

∫ kmax

kmin

X(k)P (k)dk+

+

∫ kmax

kmin

(1−X(k))P (k)

[∫ kmax

kmin

(1−X(k′))P (k′|k)dk′
]k

dk, (6.5)

where P (k) is the degree distribution on the domain of [kmin, kmax], X(k) is the

probability of selecting a node with degree k into set X, P (k′|k) is the degree

distribution of the neighbors of a node with degree k. The first integral calculates

the expectation of |X|/N , while the rest is the expectation of |Y |/N . The latter is

obtained by counting the nodes that are not in X (the first part), but only those

that also have no neighbors in X (the expression in square brackets).

We can plug in the properly normalized power-law degree distribution in P (k).

Further, for uncorrelated networks we have P (k′|k) = k′P (k′)/〈k〉. For RDS with

uniform node selection probability we have X(k) = p, resulting in:

〈RDS〉
N

= p+

+
(1− p)(1− γ)

k1−γ
max − k1−γ

min

[
k1−γ

minEγ(−kmin log(1− p))− k1−γ
maxEγ(−kmax log(1− p))

]
(6.6)

For RDS with degree-dependent probability we have X(k) = min(1, (k/κ)β), result-

ing:
〈RDS〉
N

=
k1−γ

max − κ1−γ + (1− γ)
[
y1 + κ−β(x+ y2)

]
k1−γ

max − k1−γ
min

, (6.7)
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with

x =
κ1+β−γ − k1+β−γ

min

1 + β − γ
(6.8)

y1 = k1−γ
minEγ(−kmin log a)− κ1−γEγ(−κ log a) (6.9)

y2 = κ1+β−γEγ−β(−κ log a)− k1+β−γ
min Eγ−β(−kmin log a) (6.10)

a =
κ2−γ − k2−γ

min

k2−γ
max − k2−γ

min

− (2− γ)κ−β

2 + β − γ

(
κ2+β−γ − k2+β−γ

min

k2−γ
max − k2−γ

min

)
. (6.11)

Finally, for CDS we have X(k) = Θ(k − κ), where Θ is the Heaviside step function

that returns 1 for positive arguments and 0 otherwise, yielding:

〈CDS〉
N

=
k1−γ

max − κ1−γ + (1− γ)[k1−γ
minEγ(−kmin log b)− κ1−γEγ(−κ log b)]

k1−γ
max − k1−γ

min

, (6.12)

with

b =
κ2−γ − k2−γ

min

k2−γ
max − k2−γ

min

. (6.13)

Note, that in all the above formulas, En(z) denotes the exponential integral function,

En(z) =
∫∞

1
e−ztt−ndt. The detailed derivation of the analytical estimates can be

found in Appendix D.1.

Figure 6.6 shows the accuracy of our analytical estimates in comparison with

the numerical results of RDS and CDS. Further results on scale-free networks with

different 〈k〉 and γ values are provided in Appendix D.1.4, showing that as 〈k〉
increases, the accuracy of the analytical estimates improves. For CDS and degree-

independent RDS the estimates are very close to the numerically obtained values, even

with a small 〈k〉. The estimates for degree-dependent RDS are slightly less accurate,

but still sufficient to provide a useful approximation of the expected dominating

set size. Therefore, we can easily calculate a very accurate expected size of these

dominating sets in uncorrelated scale-free networks, based on nothing beyond basic

network parameters.
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Figure 6.6: Comparison of analytical estimates and numerically com-
puted sizes of RDS and CDS in uncorrelated (cCONF) scale-
free networks. For numerical results, data is averaged over
200 network samples. Parameters: N = 5000 and 〈k〉 = 16.

6.5 Effects of Network Assortativity

Using our edge-mixing method to control the assortativity of a network (see

Section 4.5), we have compared the sizes of dominating sets as a function of assor-

tativity, measured by Spearman’s ρ. Figure 6.7 shows our results for a synthetic

network and a real social network, while the same comparison for different network

parameters is provided in Appendix D.2 for artificial networks, and in Appendix D.3

for real networks.

As expected, the size of most dominating sets increase with higher assortativity,

except for RDS with degree-independent selection probability. The most dramatic

size increase is observed in DDS, which indicates that this method can only be

considered viable in real-world applications for highly disassortative networks. Also,

as the assortativity increases, CDS becomes larger than the simple RDS at a certain

point, indicating that favoring high-degree nodes as dominators is not an effective

strategy when the network is highly assortative. While the MDS size obtained

by greedy search also increases with increasing assortativity, it shows the smallest
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Figure 6.7: Dominating set sizes as a function of Spearman’s ρ assortativ-
ity measure in (a) a synthetic network and (b) a real-world
network (Gnutella08 [230]). Networks with assortativity val-
ues different from the original network are obtained by guided
edge-mixing with double-edge swaps.

increase, thus the advantage of greedy search over other methods is more pronounced.

We also analyze the effects of assortativity on the optimal κ degree threshold

value that minimizes the size of CDS. Figure 6.8 provides a complete dependence

map of the optimal κ with respect to two vital network parameters: power-law

degree exponent γ, and assortativity, measured by Spearman’s ρ. Regardless of γ

and ρ, we can see that κ is roughly proportional to the network’s average degree.

Also, we observe that for any particular network assortativity (and ρ value), κ ∼ e−γ .

However, it is intriguing that for a fixed γ value, κ has a maximum approximately

at ρ = −0.4.

6.6 Discussion and Conclusions

It is remarkable that RDS (either dependent or independent of degree) with

optimally chosen p parameter can always provide a smaller dominating set than

a simple degree-ranked node selection. While the latter may be favored for its

simplicity and plausibility to be effective in heterogeneous networks, our results

show that it is not the case; the usefulness of degree-ranked dominating sets beyond

theoretical studies is very limited.

When we calculate a CDS, there is an algorithmic optimization we can use to
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find the CDS size for all possible κ values, including the optimal one that minimizes

CDS size, in the same time complexity as finding CDS for only one κ value. First,

we sort nodes into degree classes in O(N) time using counting sort (or bucket-sort).

The linear time complexity comes from the fact that both the number of nodes and

the range of their degree values are O(N). Then, we loop over all degree classes in

decreasing order of degree, and for each degree class we add all nodes to set X (and

remove them and their neighbors from set Y at the same time). This way, we can

check the value of |X|+ |Y | after finishing each degree class, which is exactly the

size of CDS with κ equal to the current class degree. We can either output the size

of CDS at the current degree, or simply record which CDS size at which κ was the

smallest. Since we process each node exactly the same way as in RDS (except for the

specific order in which they are processed), we have the same O(E) time complexity,

and it is not increased by the O(N) time needed to sort the nodes.

Clearly, the performance of CDS depends on the optimal selection of κ. When

full adjacency information is available, we can use our algorithmic optimization

to find the optimal κ (along with the CDS size for all κ values). Note, that since
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the algorithm only uses local connectivity information, a distributed version can be

easily designed to speed up processing large networks. However, when adjacency

information is not available, we must estimate κ. Given basic (estimated or sampled)

information about the degree distribution, we can use analytical estimates for the

CDS size (see Section 6.4); differentiation with respect to κ leads to the optimal

value. Further, the optimal κ has little dependence on particular network parameters

(power-law exponent and assortativity), as shown in Fig. 6.8. Therefore, as long as

the average degree is accurately known, κ can be chosen correctly.

The lower accuracy of our analytical estimates for RDS and CDS observed at

low 〈k〉 and γ values can be easily explained: It is an artifact of our average degree

control method (Section 4.4), which controls 〈k〉 by adjusting kmin, and removing

a certain fraction of smallest degree nodes. The latter becomes significant when

kmin → 1 (for low kmin), because it causes a slight deviation from a perfect power-law

degree distribution. In order to use the analytical formulas (which are very sensitive

to kmin), we have to estimate a fractional kmin, as if it were a cutoff of a continuous

and otherwise perfectly satisfied power-law distribution. In reality, we deviate from

power-law, leading to the inaccurate estimates. However, as 〈k〉 increases, kmin also

increases, and the relative deviation from a perfect power-law decreases, hence the

increased accuracy. The implication for real networks is that we can expect similarly

less accurate estimates if the degree distribution deviates from power-law.

While the analytical estimates for RDS and CDS are highly accurate, they

are only applicable to uncorrelated scale-free networks. However, the base formula

[Eq. (6.5)] can be used for any network (not only scale-free), if the degree distribution

and degree correlations can be expressed (or approximated) by some formula. Without

analytical expressions, one can still calculate the base formula numerically, using

observed (sampled) estimates of the degree distribution and degree correlations,

assuming that collecting these estimates requires less time than actually running the

RDS or CDS algorithms, or if full adjacency information is not available.

We can also understand CDS as a method that bridges the degree-ranked and

greedy methods. When selecting the very first nodes of the dominating sets, both

greedy and degree-ranked methods start by selecting the highest degree nodes. Later,
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they diverge; the degree-ranked selection continues with the high-degree nodes, while

greedy specifically seeks out nodes that increase domination maximally, typically

smaller degree nodes. The degree-ranked selection eventually becomes very inefficient

only because of the presence of low degree nodes connected only to each other (hard

to reach). Thus, degree-ranked selection is efficient at first, but there is a point at

which the method should be abandoned and instead look for nodes that are still

not dominated, and target them specifically. This is exactly what CDS does: it

is essentially a degree-ranked selection until κ is reached (set X), and then the

remaining undominated part is simply added as dominators (set Y ).

Our numerical study of dominating set sizes with respect to assortativity reveals

a general tendency that the dominating set becomes larger as assortativity increases.

We can understand this easily. In case of a disassortative network, high degree nodes

connect mostly to low degree nodes, therefore we can expect small dominating sets,

due to efficient domination via high-degree nodes. In fact, when γ < 2, scale-free

networks may become so disassortative that star subgraphs form and the size of

MDS becomes O(1) [236]. On the other hand, hubs are less effective in dominating

assortative networks, since most of their connections are used to connect to other

high degree nodes. Therefore, the impact of assortativity on each dominating set

selection method depends on how much the method relies on high-degree nodes as

dominators. This is why the degree-ranked selection shows the worst performance

on highly assortative networks, followed by the degree-dependent RDS (and its

limiting case, the CDS), which also favors high-degree nodes. Since technological

scale-free networks tend to be disassortative, and although social networks tend to

be assortative, extreme assortativity is rare, we can safely conclude that CDS is a

viable alternative of greedy selection for most scale-free networks.

In summary, we explored probabilistic dominating set selection strategies in

scale-free networks with respect to various network properties. We found that as a

particular limiting case of degree-dependent random node selection, a deterministic

cutoff dominating set (CDS) provides the smallest dominating set among probabilistic

methods, and is widely applicable to heterogeneous networks. Even if full adjacency

information is not available, the size of CDS (and RDS) can be accurately predicted

using our analytical estimates.



CHAPTER 7

BUILDING DAMAGE-RESILIENT DOMINATING SETS

IN COMPLEX NETWORKS

Understanding the effects of network damage is essential for designing resilient

and long-lasting networks. If we implement network control using dominating sets,

then the connectivity of the surviving network structures and the fraction of the

remaining set of nodes still dominated following failures or attacks are both essential

for sustainable network operations and carrying out network functions. While the

former (structural integrity) has been studied in great detail over the past two

decades [106–112], the latter (domination stability) has not received any attention.

We assume that the network damage is relatively small, and although the

network may become fragmented due to the loss of nodes, we assume it remains

functional. In such cases efficient domination over the network is still important

and desirable, just as it is in undamaged networks. However, considering that

most dominating set search methods aim for the smallest possible set size (and

corresponding cost) in a fixed topology network, even a small damage could severely

disrupt the complete domination “coverage.” Our goal is to understand how fragile

dominating sets are, how to improve them, and ultimately to provide new methods

for selecting dominating sets with adjustable balance between resilience and cost.

In order to quantify the resilience of a dominating set against node removal,

we define domination stability as the fraction of the remaining network that is still

dominated after some nodes have been removed from the network (and thus from

the dominating set):

s(f) :=
|
⋃
j∈DS N+(j)|
N(1− f)

, (7.1)

where DS is a dominating set of the original (undamaged) network, f is the fraction

of nodes removed from the network, and N+(j) is the closed neighborhood of node j

Portions of this chapter to appear as: F. Molnár Jr., N. Derzsy, B. K. Szymanski, and G.
Korniss, “Building Damage-Resilient Dominating Sets in Complex Networks against Random and
Targeted Attacks,” (under review).
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that still exists in the remaining network. We measure stability by simulating

network damage, i.e., by actually removing nodes from the network and calculating

the remaining dominated fraction.

Domination stability does not only depend on the fraction of removed nodes,

but also on the order in which nodes have been removed from the network. Similarly

to many studies in the literature we consider two damage scenarios: random and

targeted node removals. The random node removal strategy models network damage

produced by natural causes or errors, while the targeted node removal method reflects

the impact of intentional, targeted attacks on a network. In the random damage

scenario nodes are removed with equal probability, in random order. In case of

targeted attacks, the nodes are removed in degree-ranked order, with highest degrees

being removed first. We indicate which strategy we consider in the subscript of

stability: srand denotes the stability against random damage, and sdeg corresponds

to the stability against degree-ranked removal.

7.1 Stability of Various Fixed Dominating Sets

We start our analysis by measuring the stability of three different dominating

sets, that we use for baseline comparison with our new methods. These are the

following:

• minimum dominating set (MDS) [88,222,236], where nodes are selected by a

sequential greedy search algorithm in order to approximate the actual (NP-hard)

smallest dominating set (see Section 4.3),

• cutoff dominating set (CDS) [237], where all nodes above a degree threshold

are selected into set X, and the nodes not dominated by any nodes in set X

are selected into set Y . The dominating set is then given by X ∪Y . The degree

threshold is selected such that it minimizes the size of the resulting dominating

set (see Section 6.3),

• degree-ranked dominating set (DDS), where we select all nodes in decreasing

order of degree (with random tie-breaking) as dominators until the selected set

dominates the entire network.
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Our first choice is MDS, due to its importance in cost-efficient control of complex

networks [236]. The other methods we have chosen are potentially useful when

finding the MDS (using either a greedy algorithm or by solving the binary integer

programming equivalent) is impractical, e.g., when the adjacency information of

the network is incomplete, or the network is too large to run optimal MDS search

algorithms. In these cases heuristic algorithms, such as CDS or DDS can find

suboptimal (not the smallest possible), yet small enough dominating sets that are

still useful for practical applications. In particular, the excess nodes selected by these

methods may help to increase domination stability.

Figure 7.1 shows the stability of MDS, CDS and DDS against the fraction of

removed nodes in the entire remaining network [Fig. 7.1(a), (b)] and in the remaining

giant component [Fig. 7.1(c), (d)]. It is clear that the degree-ranked node removal

reduces the dominated fraction much faster than the random node removal, because

high-degree nodes are more likely to be dominator nodes than low degree nodes.

The giant component itself also breaks down much faster, as shown in the insets

of Fig. 7.1(c) and (d). However, as long as a giant component exists, it has higher

domination stability than the entire network, in both scenarios. The slight increase

of stability at high damage rates is a side effect caused by removal of nodes that

had lost domination by earlier removals. When the network damage is high, it

becomes more likely that these nodes are deleted, causing the dominated fraction of

the remaining network to increase. At this point, however, the network is almost

completely destroyed and domination stability becomes meaningless.

The stability curves show much more disturbed shapes in degree-ranked removal

than random removal, due to the differences in the degree structure of each dominating

set. In MDS, there is no preference toward any particular node degree during selection

of dominators (besides the natural effect of the greedy selection, where the high-

degree nodes provide a larger increase in the number of dominated nodes, hence

they are more likely selected), which means that removal of high-degree nodes has a

smooth (albeit strong) impact on stability. In CDS, we can see a fast initial drop as

we remove the very high degree nodes that were specifically selected for dominators

(in set X), then continuing at a more gentle slope as the dominators from the Y
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Figure 7.1: Stability of various dominating sets against random and
degree-ranked node removal. The first column of subfigures
shows random node removal, the second shows degree ranked
node removal. (a) and (b) show stability in the entire net-
work, while (c) and (d) show stability within the remaining
giant component. Inset in (a) shows the corresponding sizes
of dominating sets; insets in (c) and (d) show the size of the
corresponding giant component. (e) and (f) show a correla-
tion between set size and stability, at γ = 2.5. All plots show
synthetic scale-free networks, N = 5000, 〈k〉 = 8, averaged over
200 network samples.
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set are removed, since any node that was not dominated by X, regardless of degree,

may be in set Y . On one hand the Y set may seem wasteful in its construction,

but with the right degree threshold the size of the CDS is actually very close to

the MDS [237], and the excess nodes provide a fair increase in stability. DDS is

the simplest but most inefficient method for finding a dominating set because it

selects all nodes starting from the highest degrees until all nodes are dominated.

However, the resulting redundancy of dominators in the network is providing the

highest stability of all three methods.

We can also observe the general tendency that a larger dominating set provides

higher stability. At any given fraction of removed nodes, there is a positive correlation

between stability and the size of the original dominating set, in both random

[Fig. 7.1(a)] and degree-ranked [Fig. 7.1(b)] node removals. We clearly illustrate

this correlation in Fig. 7.1(e) and (f), where we show stability as a function of the

dominating set size, at various damage levels. This means that the MDS, which is

the smallest (most cost-efficient) dominating set, is also the most vulnerable, to both

random damage and targeted attacks.

Note, that Fig. 7.1 only shows the stability for a certain network type with

given degree exponent and uncorrelated networks (where Spearman’s ρ = 0). We

have included the analysis of stability at different values of these parameters in

Appendix E.3.

The main conclusion we can draw is that the extra amount of dominating nodes

selected by heuristic methods CDS and DDS, compared to the smaller and more

optimal MDS, can effectively increase the stability of domination. However, all three

methods are “fixed” in the sense that they give only a single possible dominating set

size (and corresponding stability) for a given network.

7.2 Flexible-Redundancy Dominating Set (frDS)

In order to overcome the limitations of fixed methods, we must analyze in detail

how domination is lost when the network is damaged. First, we realize that loss of

domination occurs locally at each node: those nodes that lose all dominators will

reduce the domination stability of the network. Therefore, stability can be expressed
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locally, as the domination redundancy of each node. This quantity simply counts

how many dominator nodes are within the closed neighborhood of a given node. A

large dominating set can successfully increase domination stability, if the extra nodes

are distributed in a way that they increase domination redundancy on many nodes.

This seems to occur naturally for CDS and DDS, however we cannot guarantee that

redundancy was increased in the most optimal way (relative to MDS), nor can we

control the number of selected nodes.

We introduce the flexible-redundancy dominating set (frDS) to solve these

problems. We explicitly set an average domination redundancy in the network,

denoted by r, that must be guaranteed by frDS, while aiming for minimum set size.

Note, that r = 1 is equivalent to the minimum dominating set (MDS), and when r

is an integer, the frDS is identical to the h-dominating set (with h = r) studied by

Cooper et al. [223]. Finding an frDS is most likely NP-hard, since it is also NP-hard

to find an MDS [87] or an h-dominating set [238], but we can use a modified greedy

algorithm to find an approximation.

The steps of finding an frDS are as follows. First, we assign a domination

redundancy requirement, r(i) for each node i as an integer value indicating at least

how many dominators node i must have in the dominating set. Given the desired

average (non-integer) r value for the entire network, we assign the nearest integer

values brc and dre to each node randomly, such that the network average will be

r (the probability of assigning dre is r − brc, which is analogous to a biased coin

toss). For the greedy selection we define a dominating potential p(i) as the number

of nodes in the closed neighborhood of i that have not yet reached their domination

requirement, and therefore selecting node i can help them advance toward their

goal. (Note, by definition, the potential of an already selected node is zero.) At each

greedy step we select one node with maximum dominating potential (with random

tie-breaking), until the requirements of all nodes have been fulfilled. Note, that since

dominating potential is an integer number between 0 and N , nodes can be sorted

according to their potential in O(N) steps, and it is possible to maintain sortedness

after changing the potential of a node in O(1) step (see Appendix E.1 for further

details and pseudocode). This results in the same computational time complexity as
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for the greedy MDS approximation, O(E). Also note, that if r > N , then the node

requirements can never be satisfied, in which case the greedy selection naturally falls

back to selecting nodes in degree-ranked order, because at every step every neighbor

of a node may be advanced toward its goal.

7.3 Flexible-Cost Dominating Set (fcDS)

When we aim for a desired dominating set size (fixed cost level, i.e., limited

budget), we can, in principle, aim for the necessary redundancy level in frDS to

achieve that desired cost. However, we can further improve stability by considering

the expected attack pattern on the network (if the information is available), and

optimize the selected dominating set accordingly. For example, if the attack is

expected at high-degree nodes, we should avoid selecting many of those nodes as

dominators, despite their ability to cover large fractions of the network.

We can optimize our choice of dominators by including the probability of losing

each node into the calculation of local stability, which we aim to maximize. First,

we assign a strength value s(i) ∈ (0, 1) to each node i, which represents the a-priori

estimated probability for not losing that node after the attack (i.e., the anticipated

attack pattern). Then, we calculate the current domination stability of node i as

follows:

stability(DS, i) =

0 if DS ∩N+(i) = ∅

1−
∏

j∈DS∩N+(i)(1− s(j)) else,
(7.2)

which is the probability that node i will remain dominated (not lose all dominators),

assuming nodes will be deleted independently; DS denotes the currently selected

dominating set. For selecting the next dominator, we choose one that increases the

total stability of the network maximally. The total potential increase of stability can

be calculated for each node as follows:

potential(i) =
∑

j∈N+(i)

stability(DS ∪ {i}, j)− stability(DS, j) (7.3)

=
∑

j∈N+(i)

(1− stability(DS, i)) · s(i). (7.4)
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Therefore, we always select a node with maximum potential (with random tie-

breaking). Note, that unlike in frDS, the potential here is a non-integer value,

thus we can only use comparative sorting to order nodes by potential, which needs

O(N logN) steps. In addition, after selecting each dominator, the stability values

have to be recomputed in the selected node’s closed neighborhood, and the potentials

up to the node’s second neighborhood. This involves O(d2) nodes, where d is the

average degree. Thus, maintaining sortedness of nodes by their potential requires

O(d2 logN) steps after selecting each dominator.

In order to compare stability of fcDS with frDS and other dominating sets, we

calculate the “a-priori” node strength values as follows: s(i) = 0.5 for random node

removal, and s(i) = 1− d(i)/N for degree-ranked node removal. Here, we assume

the size of the anticipated damage is unknown, thus strength values are expressing

relative probabilities only. The strength value for a random damage is arbitrary, as

long as it is uniform among the nodes, and it is inversely proportional to node degree

in a degree-ranked attack. Further details of fcDS and pseudocode are included in

Appendix E.2.

7.4 Stability Comparison of Dominating Sets

We seek to answer two main questions in our analysis. First, we want to see

how much stability we can achieve by selecting various sizes of dominating sets (in

other words, how does the stability scale with larger invested cost of domination).

Second, we want to know how much more efficient our methods are compared to the

fixed dominating sets, that is, given the same size of dominating set as MDS, CDS,

or DDS, how much higher stability can our methods provide.

Figures 7.2 and 7.3 show domination stability achieved by frDS and fcDS as

a function of redundancy and dominating set size, respectively. Stability achieved

by the fixed methods (MDS, CDS, DDS) are also shown at their corresponding

cost values for comparison. The general shape of the curves in both figures are

similar, since the dominating set size is roughly proportional to redundancy (see

Fig. 7.2 inset and Appendix E.5). In case of random damage, the stability rapidly

increases with cost, until the size of MDS is reached, then the curve saturates. There
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Figure 7.2: Domination stability of frDS and fcDS as a function of dom-
ination redundancy. (a) shows random node removal, (b)
shows degree-ranked node removal. The inset shows the sizes
of the corresponding dominating sets. The size of fcDS is
set to match frDS at any given r value. Synthetic networks,
N = 5000, 〈k〉 = 8, γ = 2.5, f = 0.3, averaged over 200 network
samples.
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Figure 7.3: Domination stability of frDS and fcDS as a function of dom-
inating set size (cost) for various network damage fractions.
Stabilities of MDS, CDS, and DDS are presented at their
corresponding cost values. Subfigure (a) shows random node
removal, (b) shows degree-ranked node removal, for synthetic
networks, N = 5000, 〈k〉 = 8, γ = 2.5, averaged over 200 network
samples.

is little advantage in selecting a dominating set larger than approximately twice

the size of MDS, because stability is already very close to 1, even at large damage

values. However, in case of degree-ranked damage, there is a steady increase in

stability as more nodes are selected as dominators. In both cases, fcDS provides
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Figure 7.4: Comparison of domination stability at fixed cost levels, as
a function of network damage fraction. Stability of frDS
and fcDS are plotted at cost values identical to MDS, CDS
and DDS. Subfigure (a) shows random node removal, (b)
shows degree-ranked node removal, for synthetic networks,
N = 5000, 〈k〉 = 8, γ = 2.5, averaged over 200 network samples.

somewhat higher stability than frDS at moderate damage levels, but frDS is more

stable at small damage levels. These observations hold across a wide range of network

parameters, see Appendix E.6. It is also clear that both frDS and fcDS can provide

great flexibility in adjusting the size of the dominating set and stability.

The stability of frDS and fcDS at cost levels identical to MDS, CDS, and DDS

are presented in Fig. 7.4. Our results show that frDS provides stability values very

similar to the fixed methods (in case of MDS, it is identical by definition, thus it is

not shown), while fcDS shows a minor improvement in stability. On the other hand,

both frDS and fcDS show significant improvement over the fixed methods against

degree-ranked attacks, at low network damage fractions. MDS and CDS show a

tipping point in damage, where these methods become slightly more effective than

frDS or fcDS, but the difference is minimal, and it occurs only at moderate to high

network damage (f & 0.3).

7.5 Stability in Real Networks

We analyze stability of frDS and fcDS, as well as other dominating sets, in

several real complex networks, listed in Table 7.1. These include an internet peer-to-

peer network (p2p-Gnutella08) [230], the power transmission network of continental
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Europe (ENTSO-E powergrid) [239,240], and one brain graph extracted from MRI

data (KKI21-KKI2009-26) [24, 241]. Note, that we only use the giant component

of these networks. A brief analysis of the degree distributions of these networks is

provided in Appendix E.7.
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Figure 7.5: Stability of frDS, fcDS, and other dominating sets in real
networks, for various damage fractions. Data is averaged
over 20 independent runs of node removal. See Table 7.1 for
network parameters.
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Table 7.1: Parameters of real networks used in our analysis. The data
refers exclusively to the giant component.

Name Source N kmin kmax 〈k〉 Spearman’s ρ
Gnutella08 [230] 6299 1 97 6.60 0.03
powergrid [239,240] 1494 1 13 2.89 −0.18

KKI-21-KKI2009-26 [24,241] 813479 1 5171 171.9 0.57

The brain graph we analyze here (KKI-21-KKI2009-19) is one of 200 graphs

available from [241]. These graphs have peculiar structural properties, and are very

similar to each other. In particular, all brain graphs are very dense: 〈k〉 ≈ 150; they

are all very assortative: ρ ≈ 0.6; and they have very similar degree distributions (see

Appendix E.8 for details). It is also interesting that the size of MDS is very small,

only 3-4% network size, while the size of CDS and DDS is very large, around 60%

and 100% of network size, respectively. We attempt to separate the effects of density

and assortativity in order to identify their impact on domination stability.

Figure 7.5 shows domination stability as a function of dominating set size

for the real network samples. In general, we see that stability of frDS and fcDS

matches the stability of MDS, and exceeds the stability of CDS and DDS, at identical

set sizes. In case of Gnutella08 and the powergrid, the stability curves saturate

slowly, and the curve shapes are not as smooth as for synthetic scale-free networks,

due to having more disturbed (non-scale-free) degree distributions. However, the

brain graph shows very high domination stability against both random and targeted

attacks. In all cases, the relative advantage of frDS and fcDS over CDS and DDS

(i.e., cost-efficiency) remains as high as in synthetic scale-free networks.

We can observe the effects of assortativity separately from other structural

properties by artificially changing the network’s assortativity, using a biased edge-

mixing method (see in [237] and Section 4.5), which rewires the edges in the graph,

while keeping the degree sequence unchanged. Using this method we present a brief

analysis of dominating set size vs. assortativity in Appendix E.9. In general, we see

the expected behavior that dominating sets tend to become larger in more assortative

networks [237]. Note, that the size of DDS in the brain graph being 100% of nodes
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regardless of assortativity is the result of a particular topological feature; there are

a small number of leaves (degree 1 nodes) connected to degree 2 nodes, thus DDS

has to select al nodes down to degree 2 (essentially all nodes) to dominate these

off-hanging leaves — a feature left unchanged by edge-mixing.

Figure 7.6 presents the effects of assortativity on domination stability. We see

an unexpected behavior: as assortativity increases, domination stability decreases

against random damage, but increases against an attack on high-degree nodes. We

can understand this behavior by considering the effects of assortativity on dominator

node degrees. In disassortative networks dominators are mostly high-degree hubs,

while in assortative networks dominators have a full range of degrees. Thus, when

the network is disassortative and the damage is random, it is less likely to remove

high-degree hubs and more likely to remove low degree nodes, the latter rarely being

a dominator, leading to increased stability. On the other hand, the result is reversed

when high-degree nodes are targeted, in which case we are more likely removing

dominators, leading to decreased stability.

Finally, we can conjecture that the outstandingly high domination stability in

brain graphs can be attributed to both their high average degree and high assorta-

tivity. High average degree results in a highly redundant dominating set (regardless

of method) which resists random damage successfully, while high assortativity guar-

antees that an attack targeted at high degrees leaves the network with plenty of

lower-degree dominators.

7.6 Partial Flexible-Redundancy Dominating Sets

There are two possible ways to achieve a certain desired cost (dominating set

size) with frDS. Either we aim for the lowest r value that provides the desired cost,

or we may choose a larger r value, and use only a fraction of the larger dominating

set it provides. In the latter case we would select nodes in the same order as the

greedy algorithm picked them. In other words, we can either select a full frDS with

small r or a partial frDS with the same size but larger r. Figure 7.7 shows the

comparison of these two cases (see Appendix E.4 for analysis over a wide range of

network parameters). The contour curves of fixed stability values are monotonically
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Figure 7.6: Stability of frDS and fcDS in edge-mixed real networks
against random and degree-ranked attacks, for various as-
sortativity levels: (a,b) Gnutella peer-to-peer network; (c,d)
ENTSO-E powergrid; (e,f) Brain (MRI) network. Network
damage fraction f = 0.3. For (a-d) data is averaged over 50 in-
dependent runs edge mixing and node removal; (e,f) is from
a single run. See Table 7.1 for parameters of the original
networks.
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(a) (b)

Figure 7.7: Domination stability of partial frDS as a function of domina-
tion redundancy and dominating set size. The plotted area
is bounded by the size of the full frDS at any given r. Subfig-
ure (a) shows random node removal, (b) shows degree-ranked
node removal, for synthetic networks, N = 5000, 〈k〉 = 8,
γ = 2.5, f = 0.3, averaged over 50 network samples.

increasing for larger r values, indicating that the cost for a certain stability level

increases if we use partial frDS with higher r values. This also means that using full

frDS with the smallest possible r value provides the highest possible stability.

In order to find the needed r value for a desired cost we must look at the

relationship between r and the size of the resulting dominating set (see Fig. 7.2(a)

inset, and Appendix E.5). The frDS size curve has a complex shape, but it is always

monotonically increasing. Therefore, we can use a bisection method for finding the

desired r value. Without any assumptions (other than monotonicity) about the size

of frDS we must calculate the full frDS for every tested r, each taking O(E) time,

leading to O(E logN) time complexity for the entire procedure.

It is also interesting to note that the cost of stability increases slightly for

smaller r values when r < 1, in case of a random damage [in Fig. 7.6(a)]. In this

case even the full frDS is providing only a partial dominating set (dominating only a

fraction of nodes in the undamaged network). This indicates that r should never be

smaller than 1; if a smaller cost is needed than the one provided by frDS with r = 1

(which is the MDS by definition), then a partial MDS (given by the greedy MDS

algorithm) is a more optimal solution.
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7.7 Effects of Incorrectly Estimated Damage in fcDS

For practical applications of fcDS, it is necessary to understand how stability

is affected, when the network damage is estimated incorrectly. We can check this

effect for a degree-ranked attack by using the following sigmoid strength function for

a node with degree k:

s(k) =
1

1 + eα(k−κ(α,f))
. (7.5)

There are two control parameters for the anticipation. The slope parameter α ∈
(−∞,∞) describes the attack distribution: it expresses whether low degrees (α < 0)

or high degrees (α > 0) are targeted, and how sharp the difference is between targeted

and non-targeted node strengths; parameter f is the anticipated damage fraction.

The κ(α, f) function gives the threshold for the sigmoid, such that the expected

number of lost nodes equals the anticipated damage,
∑

k(1− s(k))p(k) = f (where

p(k) is the degree distribution). Note, that α =∞ gives a sharp cutoff selecting all

nodes above κ, corresponding to the actual attack; 0 < α . 5 corresponds to an

uncertain transition point but correct anticipation; a ≈ 0 corresponds to a random
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Figure 7.8: Node strength functions determined by the control parame-
ters of fcDS anticipation accuracy (α and f), see Eq. (7.5).
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guess; −5 . α < 0 corresponds to an incorrect anticipation (i.e., anticipating attack

on low degree nodes, when the attack occurs at high-degree nodes); and α� −5 is

the complete opposite of the actual attack.

a) synthetic

b) Gnutella08

c) powergrid

Figure 7.9: Stability of fcDS against degree-ranked node removal as a
function of damage anticipation accuracy. (a) shows a syn-
thetic network with N = 5000, 〈k〉 = 8, γ = 2.5, (b) and (c)
show real networks. The actual damage fraction is indicated
above the plots and marked by red dashed lines; the actual
degree distribution of the damage corresponds to α ≥ 4 val-
ues.
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Figure 7.9 shows the landscape of stability as a function of the control parame-

ters. As expected, we obtain the highest stability when the attacked degrees and the

size of the attack are correctly estimated. For small damage fractions (f = 0.1) we

lose stability mostly for overestimating the size of the attack, while for moderate

(f = 0.3) and large (f = 0.5) damages we lose stability for incorrectly anticipating

which degrees are targeted.

7.8 Discussion and Conclusions

We must clarify the distinction between the prescribed domination redundancy

and the actual achieved domination redundancy in a network, when using frDS. The

former is the one denoted by the r parameter, while the latter (i.e., the actual number

of dominators in the closed neighborhood of a node) can be easily calculated for any

given dominating set (not just frDS), and its average always exceeds the prescribed

value. For example, even an MDS could have an actual average redundancy of 2.5 in

certain networks, although most nodes would have only one dominator. However, an

frDS with r = 2.5 would guarantee not only that the actual redundancy is at least

2.5, but also that no nodes will have less than 2 dominators.

The usage of frDS against degree-ranked or any other targeted attacks seems

counter-intuitive, since in frDS, we aim for an overall increased redundancy that

is most effective against random damage. However, the greedy algorithm has no

preference toward selecting low-degree or high-degree dominators when trying to fulfill

domination requirements, and in general, we observe empirically that the selected

dominators have a large variability in degrees. This indicates that dominators of a

given node may have significantly different degrees, which helps to keep the node

dominated even if high degree nodes are targeted by an attack.

In the calculation of node stability in fcDS we assumed that nodes are deleted

independently. In a realistic scenario, an attack may have between-node correlations,

especially, in spatial graphs (e.g., clustered attack on a power grid). Taking this into

count would add more complexity to the calculations, which we postpone for future

work. However, it is important to emphasize that even without correlations, the

fcDS algorithm can use arbitrary node strength values, irrespective of node degrees,
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therefore its applicability goes much beyond our studied scenario of a degree-ranked

attack.

Currently, the time complexity of fcDS is O(d2 logN) for selecting each domi-

nator node, which makes it prohibitive for very large graphs. In order to speed up

the algorithm, the only obstacle we need to overcome is maintaining the sortedness

of nodes by their potentials efficiently, which takes O(logN) steps after each change

with comparative sorting. In principle, the potentials could be discretized and

assigned to bins (the same optimization we use in frDS), which would lead to O(E)

complexity, as long as the bin count remains O(N). However, the effects of such

discretization on the dominating set and its stability is unclear, and it would require

a thorough analysis to test the method’s viability.

We can easily explain that fcDS has a slightly lower stability than frDS at low

damage fractions, which we can observe in all graphs, by looking at the effects of

incorrect attack anticipation. When the actual damage is very small, we overestimate

the damage with our degree-dependent strength formula (s(i) = 1−d(i)/N), because

we assign nonzero probabilities to losing nodes with medium to low degrees. In reality,

these nodes will not be deleted in a small targeted attack, thus the overestimated

damage causes fcDS to lose stability, dropping slightly below the levels of frDS. This

also underlines the need to correctly estimate the size as well as the distribution of

the expected attack to achieve the most optimal domination stability.

Finally, we can provide a simple guide for selecting one of our two methods for

practical applications. For large networks, or with no information about a potential

attack, frDS is a good choice for providing a dominating set with decent stability

against any form of damage (mostly against random damage originating from natural

sources), with a short computational time. However, if there is a fixed budget

for dominators, or detailed (and reliable) information is available about potential

attacks, then fcDS can be used to optimize the selected dominating set for the highest

stability.



CHAPTER 8

APPLICATION OF DOMINATING SETS IN THE

THRESHOLD MODEL: A PROOF OF CONCEPT

Social influencing and spreading processes in social networks is an active field of

research in network science and in social sciences [242]. In particular, dynamics of

information spreading is studied to describe how a small initial seed of information

can spread to the entire network [243, 244]; propagation models are studied in

epidemiology (spread of diseases) [245], and economics (word of mouth information

spreading [246], viral marketing and influencing [247, 248]); opinion dynamics are

studied in the context of social agreement formation [242]. Spreading processes on

complex networks are conceptually very similar to the spread of populations in an

environment; we can draw analogy between the critical initiators of a spreading

process in a complex network, and the critical cluster phenomenon in the diffusive

spatial spread of populations. The goals are the same in both topics: finding a

critical subset of the system that can initiate global change, and its relationship to

the underlying dynamics.

The purpose of this short chapter is showing that dominating sets can play a

significant role in social influencing. We propose that using nodes of the minimum

dominating set (MDS) are very effective in initiating global opinion cascades in social

networks.

We will use one of the most basic models of opinion adoption dynamics in

our study: the linear threshold model [8, 124–127]. In this model each individual

(node) has one of two states; it is either active, or inactive. Initially, all nodes

are inactive, except for a small set of active nodes, called initiators. The rules of

dynamics are very simple: An inactive node becomes active, if the fraction of its

neighbors that are already active exceeds a predefined threshold (hence the name

“threshold model”). Once activated, a node cannot return to inactive state. As time

progresses, the number of active nodes increases, until no more change is possible.

Spread S is defined as the subset of nodes that eventually become activated (either

130
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being initially active or activated during the spreading process). We focus on the

spread size s = |S|/N ; and in particular, we are interested in global cascades, i.e.,

the eventual activation of all nodes in the network. The smallest fraction of nodes

that must be chosen as initiators for reaching a global cascade is called the critical

fraction of initiators.

Several strategies have been proposed for initiator node selection, in order

to minimize the critical fraction of initiators. In particular, selecting nodes in

degree-ranked order (selecting highest degree nodes first), have been shown to be

effective [8]. We assert whether the MDS can provide a better alternative. A priori,

the MDS could be effective for initiating adoption cascades, because we understand

it as a means to reach nodes efficiently via nearest neighbors, which is how opinion

(adoption) spreads in the threshold model.

It is notable, that influence maximization is a closely related problem to

opinion cascades [249–251]. It is essentially a combinatorical optimization problem

that focuses on the optimal placement of initiators to maximize the spread size.

This is a hard problem, computationally [250], greedy approximations and node

selection heuristics have been proposed as alternatives [251], much like for minimizing

the critical initiator fraction. However, in influence maximization, it is implicitly

assumed that the spread will not become global, therefore an optimal solution is

more dependent on “early” spread dynamics (a few nodes causing a large spread),

while for global cascades the optimal solution may include initiators that cause only

a small early spread, as long as the total initiator set results in a global cascade.

Therefore, the best strategies for the two problems could be different.

8.1 Critical Fraction of Initiators

In a recent work, Singh et al. [8] studied the critical fraction of initiators in

Erdős-Rényi (ER) random networks, and in a real social network. We start with a

similar analysis here, on synthetic scale-free networks. Similarly to [8], first we use

uniform threshold values for all nodes, denoted by φ.

Figure 8.1 shows the cascade size s as a function of initiator fraction p, when

initiators are randomly selected. It is clearly visible that similarly to earlier results [8],
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Figure 8.1: Cascade size vs. fraction of initiators, at various levels of
uniform adoption thresholds, in a synthetic scale-free network
(cCONF), with N = 5000, γ = 2.5, 〈k〉 = 8.

global activation cascades occur in scale-free networks, when p reaches the critical

initiator fraction, pc.

In order to compare initiator selection strategies, we must be able to measure

pc numerically. Based on Fig. 8.1, we would simply need to record the smallest p

that results in the activation on all nodes. However, in principle, certain network

topologies could show only a sudden increase of spread when pc is reached, but not a

complete cascade; a small fraction of nodes may remain inactive (until more initiators

are selected and these nodes are also activated, eventually). We can correctly measure

pc in these cases, as well as in case of complete cascades, by redefining and measuring

pc as the location of the maximal derivative of the s(p) curve.

8.2 Comparison of Initiator Selection Strategies

Before we can compare strategies, we must consider the implementation details

of our proposed MDS strategy. First, we need to establish an order in which nodes

are selected as initiators. Since we use a sequential greedy algorithm to find an

MDS, we can use the same ordering as the greedy algorithm picked the nodes. If an

alternative method provides the MDS nodes without ordering, then using them in
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Figure 8.2: Critical fraction of initiators as a function of uniform adoption
thresholds, for different initiator selection strategies. Syn-
thetic scale-free networks (cCONF), with N = 5000, γ = 2.5,
〈k〉 = 8, averaged over 20 samples.

degree-ranked order would be a viable alternative. Second, we realize that since the

MDS is only a subset of nodes, it may not provide sufficient amount of initiators to

reach a global cascade, especially when the adoption threshold φ is high. In this case

we can fall back to other strategies for selecting the rest of initiators, until pc is found.

The fallback strategy is indicated after a “+” sign, e.g., “MDS+degree” denotes

initiator selection by MDS nodes first, then the rest of nodes in degree-ranked order.

Figure 8.2 compares previously studied strategies (degree-ranked, k-shell-ranked

and random node selections) [8] to our MDS strategy. Note, that the sudden jumps

in the curve originates from the discreteness of node degrees, and not from small

sample size. For example, in case of a degree 3 node, φ = 0.55 is equivalent to

φ = 0.65, because in both cases, at least two neighbors must be activated first, to

activate the given node. Quantitative changes in threshold behavior only occur at

multiples of the reciprocal of the node degree, e.g., when φ = 1/3 or 2/3, for a degree 3

node. Since low degree nodes are the most common in scale-free networks, these

“threshold jumps” add up and become visible in pc vs. φ curves. We have confirmed

this observation by repeating the calculation for Fig. 8.2 and averaging over 2000
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Figure 8.3: Cascade size vs. fraction of initiators. Adoption thresholds
follow a truncated normal distribution, shown for various
standard deviation σ values. Note, the truncated normal
distribution converges to standard uniform distribution at
σ ≈ 0.279. Parameters: synthetic scale-free network (cCONF),
N = 10000, γ = 2.5, 〈k〉 = 10, mean threshold φ = 0.5.

runs (each with a different network sample); the result was essentially identical.

We can avoid the discrete threshold jumps, and ease the comparison of strate-

gies, by applying a normally distributed adoption threshold, φ ∼ N(µ, σ) (realized

independently for each node), where we set the mean µ to match the uniform φ

threshold that we used earlier. It is important to note that large standard deviation

of the threshold distribution has a profound effect on the presence or absence of

global cascades, see Fig. 8.3. However, we use small standard deviation (σ = 0.04),

therefore we preserve the cascades. The resulting smoothness of the critical fractions

allows for easier comparison of strategies, as shown in Fig. 8.4. Note, that the normal

distribution must be truncated to (0, 1) interval.

Using normally distributed thresholds, we compare initiator selection strategies

on a wide range of network parameters, in Fig 8.5 for networks with 〈k〉 = 4, and

in Fig. 8.6 for networks with 〈k〉 = 8. We can observe that for high γ power-law

exponents, and for assortative networks, the MDS provides smaller, thus more
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Figure 8.4: Critical fraction of initiators as a function of the mean of nor-
mally distributed adoption thresholds, for different initiator
selection strategies. Standard deviation σ = 0.04. Synthetic
scale-free networks (cCONF), with N = 5000, γ = 2.5, 〈k〉 = 8,
averaged over 20 samples.

efficient set of initiators than other strategies. Note, that these network parameters

typically correspond to real social networks. In addition, the performance of MDS

follows the degree-ranked selection (best among the other methods) very closely for

other network parameters.

While we lack a theoretical reasoning for the effectiveness of MDS, we can

conjecture that degree-based strategies have poor performance in assortative networks,

because they are wasting initiators on high degree nodes that have few connections

to low degree areas of the network, while the MDS is optimized for reaching every

node equally. This is essentially the same explanation that we have for the increased

size of degree-based dominating sets in assortative networks.

To summarize, we have shown that using MDS nodes as initiators in spreading

dynamics is an efficient strategy, and it underlines the importance and applicability

of dominating sets in complex networks.
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Figure 8.5: Critical fraction of initiators as a function of the mean of
normally distributed adoption thresholds, over a wide range
of power-law degree exponents (γ) and assortativities (Spear-
man’s ρ). Standard deviation σ = 0.04. Synthetic scale-free
networks (cCONF), with N = 5000, 〈k〉 = 4, averaged over 20
samples.
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Figure 8.6: Critical fraction of initiators as a function of the mean of
normally distributed adoption thresholds, over a wide range
of power-law degree exponents (γ) and assortativities (Spear-
man’s ρ). Standard deviation σ = 0.04. Synthetic scale-free
networks (cCONF), with N = 5000, 〈k〉 = 8, averaged over 20
samples.



CHAPTER 9

SUMMARY

We explored two distinct topics in complex systems analysis, around the common

notion of finding the critical components of the system that can initiate global change,

and provide efficient means of control. In the context of population dynamics, we

studied the role of genetic sex ratio traits in competition dynamics and critical cluster

behavior in spatial spreading. In the context of networks, we conducted a thorough

analysis of the properties and applications of minimum dominating sets for observing,

controlling, and influencing complex networks.

In the first part of this dissertation, we analyzed a theoretical population

dynamics model that describes potential interactions between genetic sex-ratio traits,

controlled by only one gender, and culturally transmitted sex-specific mortality traits.

We found that there is a fundamental limit for sex ratio bias that can be sustained

by counter-balancing mortalities. We also found that the coexistence of multiple

mortality traits (in multiple coexisting groups) can successfully avert extinction,

even if each single group could not sustain itself alone.

Our study of spatial effects and diffusive spreading in the same model revealed

the presence of a critical cluster size, below which an initial population patch cannot

achieve positive growth, which is closely related to the critical radius phenomenon

in statistical physics. We also found that if the habitat is already occupied by a

stable resident group, which can be exploited by an invader, then any small patch of

invader can advance from rarity and exclude the resident. When a group invades

an empty environment, which is desirable in ecological restoration, the cost of a

successful spread becomes an important economical question. We introduced a novel

application of simulated annealing for minimizing the total number of individuals in

the initial patch, and thus minimizing the cost of successful restoration.

In future research, our theoretical models could be extended in two distinct

directions. One possibility is specializing the model for a specific species, based on

empirical data, in order to test the predicting capability of the underlying theoretical
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principles. However, sex ratio dynamics and evolution could be futher studied in

theoretical directions as well, by extending the basic assumptions of sex ratios and

their interactions with other traits of organisms.

It would also be interesting to test our findings of ecological restoration in a real

environment. However, one would have to consider the specific dynamics of growth

of the given species being studied, and the implementation of non-uniform spatial

distributions would have to be developed. Nonetheless, the theoretical approach of

cost minimization is generally applicable to reaction-diffusion systems, which could

have broader applications, e.g., in materials science and microstructure engineering.

In the second part of this dissertation, we conducted an extensive numerical

study of minimum dominating sets (MDS) in model scale-free networks, using a

greedy algorithm for finding approximate MDS solutions. This work also involved the

development and implementation of several scale-free network construction models,

and techniques for controlling the average degree and assortativity. Our work revealed

a domination transition of MDS size from linear to O(1) with respect to network

size, as the degree exponent becomes less than 2, which leads to easily dominated

networks, under certain structural conditions on the maximum realized degrees. Our

contribution is not only finding this transition, but also providing a graph-theoretical

explanation, and uncovering a relationship to the graphicality of power-law degree

sequences.

We have explored the possibilities of using probabilistic node selection methods

for selecting dominating sets, based on the method of Alon and Spencer [88]. Our

work revealed that using a degree-dependent node selection probability leads to more

efficient dominating sets. We also found a special limit of selection probabilities,

where the node selection becomes deterministic, and the dominating set size is

minimized, approaching the quality of state-of-the-art MDS approximations. Since

this method only uses local information, it can be distributed and parallelized. In

essence, it provides an alternative tool for finding small dominating sets, thereby

contributing to their real-world applicability. Further, the special nature of this

method provides an important theoretical insight of MDS approximation methods,

as it forms a bridge between greedy and degree-ranked selection of dominating nodes.
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We evaluated the damage resilience of dominating sets, i.e., the post-damage

dominated fraction, in scale-free networks, and found that resilience can be improved

by adding a few carefully selected nodes to the dominating set. This simple approach

was effective against both random and targeted removal of nodes from the network.

Based on this idea, we have developed two new methods that can select dominating

sets with a flexible balance between resilience and set size (cost): one for providing a

specific resilience level, another for maximizing resilience at a given cost level while

considering the expected attack pattern.

As a proof of concept, we completed a short analysis of the linear threshold

model, and found that using MDS nodes as the initiators of influence propagation

can maximize opinion spread, outperforming previous methods, such as selection by

degree or k-shell value, for assortative networks. This result holds even if the opinion

thresholds are not uniform. In addition, we found that the standard deviation of

the threshold distribution has a profound influence on the presence or absence of a

global opinion cascade.

Our work revealed, on several occasions, that mixing patterns play a crucial

role in network domination. Technological networks tend to be dissortative, and

easily dominated, while social networks are assortative, and harder to dominate.

Understanding the quantitative (theoretical) relationship between assortativity and

MDS size, in the future, would be significant for designing domination strategies for

real networks.

While the analysis of network damage can be viewed as a first step, domination,

control, and influencing of dynamically changing network topologies remain unex-

plored. Interactions of the two dynamics (changing topology and changing dynamics

on top of it) could provide new insights and depper understading of spatiotemporal

pattern formation in complex networked systems.
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[125] B. Latané and T. L’Herrou, “Spatial clustering in the conformity game:
dynamic social impact electronic groups,” J. Pers. Soc. Psychol. 70,
1218–1230 (1996).

[126] D. J. Watts, “A simple model of global cascades on random networks,” Proc.
Natl. Acad. Sci. USA 99, 5766 (2002).

[127] D. J. Watts and P. S. Dodds, “Influentials, networks, and public opinion
formation,” J. Consum. Res. 34, 441 (2007).

[128] E. L. Charnov, The Theory of Sex Allocation (Princeton University Press,
Princeton, NJ, 1982).

[129] J. Jaenike “Sex chromosome meiotic drive,” Ann. Rev. Ecol. Syst. 32, 25–49
(2001).

[130] K. Tainaka, T. Hayashi, and J. Yoshimura, “Sustainable sex ratio in lattice
populations,” Europhys. Lett. 74, 554–559 (2006).

[131] S. A. West, Sex Allocation (Princeton University Press, Princeton, NJ, 2009).

[132] L. Aviles, P. Abbot, and A. D. Cutter, “Population ecology, nonlinear
dynamics, and social evolution. I. Associations among nonrelatives,” Am. Nat.
159, 115–127 (2002).

[133] D. S. Boukal and L. Berec, “Single-species models of the Allee effect:
extinction boundaries, sex ratios and mate encounters,” J. Theor. Biol. 218,
375–394 (2002).

[134] L. Berec, E. Angulo, and F. Courchamp, “Multiple Allee effects and
population management,” Trends Ecol. Evol. 22, 185–191 (2006).

[135] L. Berec, D. S. Boukal, and M. Berec, “Linking the Allee effect, sexual
reproduction, and temperature-dependent sex determination via spatial
dynamics,” Am. Nat. 157, 217–230 (2001).

[136] L. L. Cavalli-Sforza and M. W. Feldman, Cultural Transmission and Evolution:
A Quantitative Approach (Princeton University Press, Princeton, NJ, 1981).

[137] P. Amarasekare, “Competitive coexistence in spatially structured
environments: a synthesis,” Ecol. Lett. 6, 1109–1122 (2003).

[138] A. Allstadt, T. Caraco, and G. Korniss, “Preemptive spatial competition
under a reproduction-mortality constraint,” J. Theor. Biol. 258, 537–549
(2009).

[139] B. M. Going, J. Hillerislambers, and J. M. Levine, “Abiotic and biotic
resistance to grass invasion in serpentine annual plant communities,”
Oecologia 159, 839–847 (2009).



151

[140] E. Sober, The Nature of Selection: Evolutionary Theory in Philosophical Focus
(MIT Press, Cambridge, MA, 1984)

[141] I. M. Hastings, “Manifestations of sexual selection may depend on the genetic
basis of sex determination,” Proc. R. Soc. B 258, 83–87 (1994).

[142] B. M. Appleby, S. J. Petty, J. K. Blakey, P. Rainey, and D. MacDonald, “Does
variation of sex ratio enhance reproductive success of offspring in tawny owls
(Strix aluco)?,” Proc. R. Soc. B 264, 1111–1116 (1997)

[143] J. Komdeur, D. Daan, J. Tinbergen, and C. Mateman, “Extreme adaptive
mofification in sex ratio of the Seychelles warbler’s eggs,” Nature 385,
522–525 (1997)

[144] C. Dijkstra, S. Daan, and J. B. Buker, “Adaptive seasonal variation in the sex
ratio of kestrel broods,” Funct. Ecol. 4, 143–147 (1990).

[145] A. C. Chandley and H. J. Cooke, “Human male fertility—Y-linked genes and
spermatogenesis,” Hum. Mol. Genet. 3, 1449–1452 (1994).

[146] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipies in C: The Art of Scientific Computing, 2nd ed.
(Cambridge University Press, New York, NY, 1992).

[147] A. Gandhi, S. Levin, and S. Orszag, “Nucleation and relaxation from
meta-stability in spatial ecological models,” J. Theor. Biol. 200, 121–146
(1999).
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APPENDIX A

Population Dynamics

A.1 Separatrices of Stationary Solutions for Single-Sex Model

In Section 3.2 we have derived an analytical expression for the relationship

between density and its spatial derivative for the stationary solutions:

v(u) = ±
√

3u4 − 2u3 + 6µu2 + 12DE

6D
. (A.1)
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Figure A.1: Phase plot of dynamics in the single-sex model, described
by Eq. (A.1). D = 1.0, µ = 0.05. The dots indicate fixed
points, the thick lines indicate separatrices. Different curves
correspond to different E parameters, however, values of E
were not chosen uniformly, for aesthetic reasons. This figure
is identical to Fig. 3.1(a); it is repeated here for the reader’s
convenience.
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Here we present further analysis to find the special values for E corresponding

to separatrices, by analyzing local extremum points of v(u). To find such points,

we need only to study the fourth-order polynomial under the square root. Such

a polynomial generally has three extrema. We utilize the phase plot [Fig. A.1] to

identify minima and maxima.

First, notice that when we are outside separatrix S3 (green curves), v(u) has a

minimum at P1, maximum at P2 and minimum at P3. The minimum at P3 disappears

when S3 is reached. Therefore, we substitute the formula for u∗3 (the fixed point at

P3) into the polynomial under the square root in v(u) and equate to zero:

3(u∗3)4 − 2(u∗3)3 + 6µ(u∗3)2 + 12DE = 0, (A.2)

and we solve for E. We denote the result with the subscript of the corresponding

separatrix:

E3 =
1

24D
(u∗3)2(u∗3 − 6µ) (A.3)

Therefore, if E = E3, we obtain separatrix S3.

Following the same logic, we find that the local minimum of v(u) at P1 becomes

zero, when we reach separatrix S2. We now substitute u∗1 (the fixed point at P1) into

the polynomial. Note that u∗1 = 0, which gives

12DE = 0. (A.4)

Therefore, we obtain separatrix S2 when E = E2 = 0. Further, in this case we can

find the zero point values of v(u) easily:

3u4 − 2u3 + 6µu2 = 0. (A.5)

This gives the following zero points:

u1 = 0, (A.6)

u2,3 =
1

3
±
√

1

9
− 2µ. (A.7)
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This gives the necessary condition µ < 1
18

for the existence of S2 and the corresponding

aperiodic solution. Note, that this is a stricter condition than the existence of nonzero

fixed points.

Separatrix S1 is found again using the same method. It corresponds to the

case when the local maximum at P2 becomes zero (and disappears). We substitute

u∗2 into the polynomial to obtain:

3(u∗2)4 − 2(u∗2)3 + 6µ(u∗2)2 + 12DE = 0 (A.8)

We solve for E and denote the result with the subscript number of the separatrix:

E1 =
1

48D
(u∗2 − 2µ)(u∗2 − 6µ). (A.9)

Therefore, if E = E1 we obtain separatrix S1. Note that E1 is negative. To

summarize, the separatrices have corresponding E values that relate to each other as

E1 < E2 = 0 < E3. (A.10)

A.2 Analysis of Stationary Solutions of the Single-Sex Model

Stationary solutions outsite S2 separatrix (blue, green, and black curves on

Fig. A.1) have no physical or biological meaning, because they are unbounded, and

extend to negative density ranges. Therefore we restrict our analysis to the periodic

stationary solutions (red curves), and show that there is a minimum required spatial

extent for their existence. In other words, we show that the period length cannot be

smaller than a certain value.

In general, the length of period, L, specified by the value of E (note, E1 <

E < E2 for periodic solutions) cannot be derived analytically, but we can find it

numerically by integrating Eq. (A.1) for given model parameters, see Fig. A.2. As

expected, L goes to infinity as E goes to E2, that is, the solutions converge to S2

separatrix, which corresponds to the aperiodic solution. It is also clearly visible that

L is monotonically decreasing for smaller values of E. As E goes to E1 the solutions

converge to P2 fixed point, which is a center. Since E cannot be smaller that E1,
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the period length corresponding to E1, denoted by L∗, is the minimum length. To

find L∗ explicitly, we need to analyze the asymptotic behavior of solutions around

P2. First, we find the stability matrix and its eigenvalues.

f(u, v) =
∂u

∂x
= v (A.11)

g(u, v) =
∂v

∂x
=
−1

D

(
1

2
u2(1− 2u)− µu

)
(A.12)

J =

∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

 =

 0 1

3u2−u+µ
D

0

 (A.13)

We obtain the following eigenvalues:

λ1,2 = ±
√

3u2 − u+ µ

D
. (A.14)

We are interested in the imaginary eigenvalues corresponding to the center (P2):

λP2 = λ1,2 (u∗2) = ±i
√

16µ− 1 +
√

1− 16µ

8D
. (A.15)

Asymptotically, as the periodic solutions approach P2 they become circular orbits

with an angular frequency given by the imaginary eigenvalue:

ω =

√
16µ− 1 +

√
1− 16µ

8D
. (A.16)

From this we obtain the length of period (wavelength) in the limit of P2:

L∗ =
2π

ω
= 2π

√
8D

16µ− 1 +
√

1− 16µ
. (A.17)

This is the minimum habitat size allowing periodic stationary solutions, corresponding

to E = E1.
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Figure A.2: Length of period in periodic stationary solutions, found by
numerical integration of v(u) ≡ du/dx. D = 1.0, µ = 0.05.
L∗ is the minimum habitat size allowing periodic stationary
solutions.

A.3 Simulated Annealing

To move beyond the homogeneous distribution of the initial population as we

seek to minimize cost, we need a method that finds the minimum cost in the domain

of infinitely many possible distribution functions. The key to solving this problem is

to define the initial distribution in discretized form. We can determine the eventual

persistence or extinction of an initial population only by running the simulation

to global equilibrium, and this simulation requires a spatial discretization for the

integration. We use the same grid to discretize the initial distribution function.

Further, we can assume that whatever initial distribution gives the minimum cost,

it will have a finite support, therefore we can restrict the spatial extent of the

distribution to a region in the center of the simulated space. If this restricted spatial

domain includes k grid points, we essentially reduce an infinitely detailed initial

distribution to a k-dimensional function.

To find the minimum cost distribution, we use a global optimization method

on the k-dimensional cost function, given the constraint that the population must
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persist. We use simulated annealing [181], which has the ability to explore the

multidimensional domain randomly without getting stuck in local minima. It slowly

guides itself to the global minimum of the given function (in our case, the cost

function) by lowering a control parameter, which slowly lowers the expected function

values the random moves can take. Eventually, a global minimum is found.

Simulated annealing requires an initial guess for the minimum-cost shape, and

we must define a transition function that can transform any shape to any other in

some finite number of iterations. At every step of the minimization, the new shape

is proposed by applying the transition function to the previous shape. It is then

accepted or rejected by the following criterion:

Pr(accepted) =

1 if ∆C < 0

exp
[−∆C

T

]
if ∆C ≥ 0,

(A.18)

where ∆C is the difference of cost between the newly proposed and previous functions,

and T is a temperature-like control parameter that is lowered over time by a given

“cooling schedule,” so the probability of accepting changes that increase the cost

function continuously declines. Eventually only changes that lower the cost are

accepted, which finally moves the cost to a local minimum, but due to the gradual

cooling and the stochastic nature of the procedure, this is also the global minimum

with high probability.

Our minimization procedure starts with the following initial conditions:

z(x) := max

(
0, H

(
1− |(x−N/2)|

W/2

))
(A.19)

T (0) := 0.1 (A.20)

Here, T is the temperature parameter and z(x) denotes either male or female initial

density distributions. The shape of z(x) is an isosceles triangle standing on its

shorter side of length W and having altitude H. These values are arbitrary, as long

as the initial population they define generates a cost well above the sought minimum,

so that they do not influence the minimization procedure. N denotes the width

of simulated habitat; W < N . In our simulations, we used the following values:



165

N = 600, W = 100 (measured in discretized grid points), H = 0.4, which is above

the Allee threshold in every case we studied.

To minimize restoration cost with simulated annealing, we iterate the following

steps. First, we determine the current spatial distribution’s finite support:

a := {x : z(x) > ξ ∧ ∀i < x : z(i) ≤ ξ} (A.21)

b := {x : z(x) < ξ ∧ ∀i : a < i < b : z(i) > ξ} (A.22)

ã := a− (b− a)/4 (A.23)

b̃ := b+ (b− a)/4, (A.24)

where ξ is a cutoff threshold set to 10−3. We use a randomized Gaussian function as

transition function to generate a new proposed shape. The mean of this function is

chosen from [ã, b̃] interval. Therefore, we allow for increasing the width of the density

distributions, should the simulated annealing take that direction. The bell-shaped

curve is defined by the following parameters:

M := ã+ α(̃b− ã) (A.25)

A := 2βT (A.26)

V := (̃b− ã)/8 + 5γT (̃b− ã) (A.27)

S :=

−1 if δ < 1/2

1 if δ ≥ 1/2
, (A.28)

where M , A, V and S represent mean, amplitude, variance and sign, respectively,

and α, β, γ and δ are uniform random numbers in the range [0, 1). Note, that

amplitude and variance also depend on the current temperature, T , which helps the

minimization process by making smaller changes as T is reduced. The transition

function is defined as

g(x) :=
SA√
2πV

exp

[
−(x−M)2

2V

]
. (A.29)
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We then add g(x) to the current shape, resulting in a new proposed shape:

z̃(x) := max (0, z(x) + g(x)) . (A.30)

We calculate shape distributions separately (independently) for both males and

females. After the new shapes have been generated, the cost of the proposal is

evaluated, and then accepted or rejected according to equation (A.18). Finally, the

temperature is lowered using a simple cooling schedule:

T (t+ 1) = 0.9999T (t). (A.31)

The iteration of these steps starts at T (0) = 0.1 and continues until T (t) < 10−4.

The constraint requiring successful restoration must be checked by running

the simulation until convergence to a homogenous stationary state, persistence or

extinction. If the newly proposed shapes result in extinction, the shapes are always

rejected regardless of Eq. (A.18). Therefore, given that all previously accepted shapes

resulted in survival, and given the convexity of the transition function (Gaussian),

we know that when the newly proposed shapes increase the cost, then survival

is guaranteed and there is no need to check it with a simulation. A test is only

necessary when the cost is reduced. Still, this means that we need to run a numerical

simulation for almost every second Monte Carlo step, which is computationally very

intensive. To improve performance, we use GPGPU computation (using graphics

processing units of video cards for general purpose computations) with CUDA [182].

Using GPUs can significantly improve the performance of PDE integration [183].

This technology lets us carry out each simulation within a fraction of a second, giving

a total time for the simulated annealing in the order of a few hours.



APPENDIX B

Synthetic Scale-Free Network Generation

B.1 Mixing Time of HHMC Networks

In order to ensure that HHMC gives a uniform sample of all possible networks

with the given degree sequence, we must study the mixing time of the Markov chain.

For the lack of theoretical bounds on the exact mixing times of networks with general

degree sequences (or power-law degree sequences), we can only empirically inspect

the change of a particular metric of the network during mixing, and visually select

a mixing time after which the observed value does not change significantly. In our

study, the obvious quantity we observe is the MDS size. Figure B.1 shows the MDS

size of a single network during mixing. Using multiple observations with various γ

parameters, we find that repeating edge swap attempts four times the number of

edges is sufficient to reach a properly mixed network.
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Figure B.1: Evolution of MDS size in HHMC networks during random
edge-swaps. N = 5000, 〈k〉 = 14. The vertical dashed line
indicates where the HHMC method normally stops during
network construction.
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B.2 Graphicality Correction Algorithm

The algorithm is built on the idea that the Havel-Hakimi algorithm constructs a

network during the testing of a degree sequence, and proceeds as far as possible, until

the non-graphicality of the sequence is determined, or all edge stubs are connected.

In case of a non-graphical sequence, we eventually arrive at a node with too many

stubs that cannot be connected. We simply ignore these stubs, and keep the network

that has already been constructed. Since there could be more nodes with stubs that

could be connected among themselves, we continue the Havel-Hakimi procedure until

all node stubs are connected or deleted. The exact steps are given in Alg. 1. Note,

that it is not necessary to actually construct the network during this algorithm, it

is sufficient to record the degrees of nodes that would be created. The result is a

graphical degree sequence, which can be passed to any degree sequence sampling

method.

Algorithm 1 Graphicality Correction

Require: U = (u1, u2, ..., uN): input degree sequence, 1 ≤ ui < N
Ensure: S is graphical

if there are odd number of odd degrees then
j := ARGMAX(ui)
uj := uj − 1

end if
Sort U to nonincreasing order
V := (v1, v2, ..., vN) . new degree sequence
Initialize V to zeros
for i := 1 to N do

if ui = 0 then
break . no more degrees

end if
for j := i+ 1 to i+ ui do

if uj > 0 then
uj := uj − 1
vi := vi + 1
vj := vj + 1

else
break . non-graphical, skip remaining stubs of node i

end if
end for
Sort U in range [i + 1, N ] to nonincreasing order and move elements of V

simultaneously with U .
end for
U := V



APPENDIX C

Scaling of Minimum Dominating Sets

C.1 Probability Distribution of the Size of MDS

In order to justify the averaging of MDS sizes found in realizations, we present

the distributions of greedy MDS sizes in each network realization [Fig. C.1(a)], and

the distribution of averaged MDS sizes across multiple realizations [Fig. C.1(b)]. In

both cases we find approximately Gaussian distributions. However, the width of

the distribution of MDS sizes in a single realization is about an order of magnitude

smaller than the width of distribution across realizations. Therefore, we can indeed

study the MDS size scaling correctly by ensemble averages.

C.2 Asymptotic Scaling of the MDS Lower Bound

We can derive the asymptotic scaling of the lower bound for the MDS in power-

law degree distributions with fixed average degree. While starting from slightly

different assumptions, our derivation is very similar to that of Ref. [92]. We then

explicitly apply the integral formulae to both kinds of kmax cutoffs we considered in

our study.

Using continuous degree distributions, P (k) ' Ck−γ, we may work with

integrals instead of cumbersome discrete sums. First, we derive the normalization

constant C for a power-law distribution with lower cutoff kmin and upper cutoff kmax:

C =

[∫ kmax

kmin

k−γ dk

]−1

=
1− γ

k1−γ
max − k1−γ

min

(C.1)

The average degree 〈k〉 is found by:

〈k〉 = C

∫ kmax

kmin

k1−γ dk =

(
1− γ
2− γ

)
k2−γ

max − k
2−γ
min

k1−γ
max − k1−γ

min

(C.2)

Assuming that kmax →∞ as N →∞, and γ > 2, the formula above can be simplified
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Figure C.1: (a) Distributions of the MDS size for 100 network realiza-
tions, found by greedy search executed 1000 times on each
realization. One distribution curve is plotted for each realiza-
tion. (b) Distribution of the MDS sizes across realizations,
for 1000 network realizations. All realizations are CONF net-
works with N = 2000, γ = 2.5, 〈k〉 = 14.

for large N :

〈k〉 '
(
γ − 1

γ − 2

)
kmin (C.3)

Now we select all nodes above a certain degree threshold k′. The number of these

nodes is

l(k′) = NC

∫ kmax

k′
k−γ dk = N

k1−γ
max − k′1−γ

k1−γ
max − k1−γ

min

(C.4)

Assuming that all nodes with degree > k′ have non-overlapping neighbors, these

nodes dominate as many nodes as their degree. Asymptotically, we can ignore that

these nodes also dominate themselves. Therefore, the number of nodes dominated
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by the selected l(k′) nodes is

d(k′) = NC

∫ kmax

k′
k1−γ dk = N

(
1− γ
2− γ

)
k2−γ

max − k′2−γ

k1−γ
max − k1−γ

min

(C.5)

We look for the special degree threshold k′ = k∗, such that d(k∗) = N , which means

the entire network is dominated. Then for γ > 2 and large N from Eq. (C.5) it

follows that

k∗ '
(
γ − 2

γ − 1

) 1
2−γ

k
γ−1
γ−2

min , (C.6)

and combining it with Eq. (C.3) we find

k∗ '
(
γ − 2

γ − 1

)
〈k〉

γ−1
γ−2 . (C.7)

Using this degree threshold, from Eq. (C.4), the lower bound of the size of MDS

becomes

l(k∗) ' N

(
k∗

kmin

)1−γ

= N〈k〉−
γ−1
γ−2 . (C.8)

Since we use a fixed average degree, the number of selected nodes is proportional to

N , therefore the lower bound is O(N). Further, this linear bound of the MDS size is

asymptotically tight, because the natural upper bound of the dominating set for a

graphs with no isolated vertices is N/2 [222] (either a maximal independent set or

its complement is a dominating set).

Note, that the result above always holds when kmax →∞ as N →∞, therefore

it holds for networks with kmax = N − 1 or kmax =
√
N . However, in the latter case

the convergence of the bound to its asymptotic limit is very slow. If l(k∗) is evaluated

on the range of network sizes we study (see Fig. C.2), we cannot diretly observe the

O(N) scaling of the bound. Numerical experiments show that the bound’s O(N)

scaling can only be observed when N > 108 (see Fig. 5.2).

In the case when γ < 2 (note, we always assume γ > 1), the average degree

cannot be fixed asymptotically, because it diverges as kmax → ∞. To derive an

asymptotic bound, we need to assume that kmin = 1. From the condition that all
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nodes in the network must be dominated, d(k∗) = N , Eq. (C.5) yields

k∗ '
[
k2−γ

max −
(

2− γ
γ − 1

)] 1
2−γ

' kmax . (C.9)

Inserting this result into Eq. (C.4) would give l(k∗) = 0 in the asymptotic limit.

However, for the correct interpretation of this result we must consider that a network

actually has a discrete degree distribution. The convergence of k∗ to kmax, which

is valid for the discrete case as well, means that the dominating set ony contains

maximum degree nodes, therefore the lower bound of MDS size becomes N/kmax. For

kmax = N − 1 networks this gives an O(1) bound, and for kmax =
√
N networks this

gives an O(N1/2) bound. Finally, an observation worth noting: when γ < 2, l(k∗)

gives no better asymptotic lower bound for scale-free networks than the well-known

formula |MDS| ≥ N/(kmax + 1) [222].
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Figure C.2: Comparision of measured MDS size obtained by greedy al-
gorithm and its corresponding l(k∗) lower bound, in HHMC
and cHHMC networks, 〈k〉 = 14.
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C.3 Partial MDS Scaling with Network Size
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Figure C.3: The size of partial MDS scaling with N in regular cutoff
(kmax = N − 1) networks, 〈k〉 = 14, averaged over 400 samples
at every data point. The dominated fraction of nodes is
expressed as percentage of N .
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Figure C.4: The size of partial MDS scaling with N in networks with
structural cutoff (kmax =

√
N), 〈k〉 = 14, averaged over 400 sam-

ples at every data point. The dominated fraction of nodes is
expressed as percentage of N .
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C.4 Maximum Realized Degree

The expected maximum degree of a network can be calculated analytically

from the degree distribution. We start with a power-law PMF with cutoffs kmin and

kmax:

pK(k) = k−γ (ζ (γ, kmin)− ζ (γ, kmax + 1))−1 . (C.10)

The probability that any given sample K from this distribution is below a certain k′

bound is:

Pr(K ≤ k′) =
k′∑

k=kmin

pK(k) =
ζ(γ, kmin)− ζ(γ, 1 + k′)

ζ(γ, kmin)− ζ(γ, 1 + kmax)
, (C.11)

and assuming all N node degrees are sampled independently, the probability that all

degrees are below k′ is:

Pr(all degrees ≤ k′) = (Pr(K ≤ k′))
N
, (C.12)

which is by definition the cumulative distribution function (CDF) for the largest

degree, Z = max{K1, K2, ..., KN}, with Ki being a sampled node degree. Then, the

expected value of Z is:

EZ =
kmax∑

k′=kmin

[1− Pr(all degrees ≤ k′)] =

=
kmax∑

k′=kmin

[
1−

(
ζ(γ, kmin)− ζ(γ, 1 + k′)

ζ(γ, kmin)− ζ(γ, 1 + kmax)

)N]
. (C.13)

By numerically evaluating this formula, we can find the expected largest degree

in a network with any degree distribution. Figure 5.6(a) shows these values for a

power-law distribution as a function of the power-law exponent.



APPENDIX D

Probabilistic Dominating Sets

D.1 Analytical Estimates of the Size of Probabilistic Domi-

nating Sets

In the main text we introduced the analytical estimates of the RDS and

CDS methods for uncorrelated scale-free networks. Here, we present the detailed

derivations of these estimates. We start by deriving the expected sizes of sets X and

Y that constitute the probabilistic dominating set. In general, we have the following:

|X|
N

=

∫ kmax

kmin

X(k)P (k)dk, (D.1)

where X(k) is the probability that a node with degree k is added to set X, and P (k)

is the degree distribution of the network, with lower bound kmin and upper bound

kmax. Using the same notation, we have for the Y set:

|Y |
N

=

∫ kmax

kmin

(1−X(k))P (k) Pr(not dominated)dk (D.2)

=

∫ kmax

kmin

(1−X(k))P (k)

[∫ kmax

kmin

(1−X(k′))P (k′|k)dk′
]k

dk. (D.3)

Here, we count all nodes that are not in X (the first integral), but only those

that are also not dominated by any node in X, which means that none of the k

neighbors of any given node with degree k are in set X (the second integral inside the

square brackets). P (k′|k) is the conditional probability distribution of the degrees of

neighbors for a given node with degree k. Since we obtain a probabilistic dominating

set by X ∪ Y , and these sets are disjoint, we have:

〈DS〉
N

=

∫ kmax

kmin

X(k)P (k)dk+

+

∫ kmax

kmin

(1−X(k))P (k)

[∫ kmax

kmin

(1−X(k′))P (k′|k)dk′
]k

dk. (D.4)
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This is a general formula for the size of any probabilistic dominating set in a network

with arbitrary degree distribution and degree correlations.

To estimate the size of RDS and CDS in uncorrelated scale-free networks, first

we need to find the formula for the properly normalized power-law degree distribution,

P (k) = Ck−γ. The normalization constant is found by:

C =

[∫ kmax

kmin

k−γdk

]−1

=
1− γ

k1−γ
max − k1−γ

min

. (D.5)

Further, we have for uncorrelated networks:

P (k′|k) =
k′P (k′)

〈k〉
. (D.6)

We can obtain 〈k〉 as follows:

〈k〉 =

∫ kmax

kmin

kP (k)dk = C

∫ kmax

kmin

k1−γdk =

(
1− γ
2− γ

)
k2−γ

max − k
2−γ
min

k1−γ
max − k1−γ

min

. (D.7)

D.1.1 RDS with Uniform Node Selection

In case of RDS, with a uniform node selection probability, we have: X(k) = p,

where p ∈ (0, 1) is the probability parameter. Substituting into Eq. (D.4) yields:

〈RDS〉
N

=

∫ kmax

kmin

pP (k)dk +

+

∫ kmax

kmin

(1− p)P (k)

[
1− p
〈k〉

∫ kmax

kmin

k′P (k′)dk′
]k

dk (D.8)

= p+

∫ kmax

kmin

(1− p)k+1P (k)dk (D.9)

= p+
1− γ

k1−γ
max − k1−γ

min

∫ kmax

kmin

(1− p)k+1k−γdk. (D.10)
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The integration above can be calculated as follows:

∫ kmax

kmin

(1− p)k+1k−γdk =

(p− 1) [Γ(1− γ,−kmax log(1− p))− Γ(1− γ,−kmin log(1− p))] [− log(1− p)]γ−1 ,

(D.11)

where Γ(a, z) is the incomplete gamma function, Γ(a, z) =
∫∞
z
ta−1e−tdt. We can

simplify Eq. (D.11) by using the following:

Γ(1− γ, z) = z1−γEγ(z), (D.12)

where Eγ(z) is the exponential integral function, Eγ(z) =
∫∞

1
e−ztt−γdt. Detailed

explanation for using exponential integrals instead of gamma functions is included

in Section D.1.5. Substituting into Eq. (D.11) yields:

∫ kmax

kmin

(1− p)k+1k−γdk =

(p− 1)
[
k1−γ

maxEγ(−kmax log(1− p))− k1−γ
minEγ(−kmin log(1− p))

]
. (D.13)

Therefore, we have the estimated size of RDS as:

〈RDS〉
N

= p+

+
(1− γ)(1− p)
k1−γ

max − k1−γ
min

[
k1−γ

minEγ(−kmin log(1− p))− k1−γ
maxEγ(−kmax log(1− p))

]
. (D.14)

D.1.2 RDS with Degree-Dependent Node Selection

In this case we have a degree-dependent formula for X(k), making the derivation

longer, since we cannot simplify the integrals. We use the reparametrized selection

probability that is expressed as a function of the κ degree threshold, we have

X(k) = min(1, (k/κ)β), where κ is defined as κ = kmaxp
−1/β in the main text. Thus
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we get from Eq. (D.4):

〈RDS〉
N

=

∫ kmax

kmin

min
(

1, (k/κ)β
)
P (k)dk+

+

∫ kmax

kmin

(
1−min

(
1, (k/κ)β

))
P (k)

[∫ kmax

kmin

(
1−min

(
1, (k′/κ)β

)) k′P (k′)

〈k〉
dk′
]k

dk.

(D.15)

For the first integral in Eq. (D.15), corresponding to 〈X〉/N , we have:

∫ kmax

kmin

min
(

1, (k/κ)β
)
P (k)dk =

∫ min(kmax,κ)

kmin

(k/κ)β P (k)dk +

∫ kmax

min(kmax,κ)

P (k)dk,

(D.16)

where we can simplify the integration bounds, since always κ < kmax:

∫ kmax

kmin

min
(

1, (k/κ)β
)
P (k)dk =

∫ κ

kmin

(k/κ)β P (k)dk +

∫ kmax

κ

P (k)dk. (D.17)

The first integral of Eq. (D.17) can be calculated as

∫ κ

kmin

(k/κ)β P (k)dk =
(1− γ)κ−β

k1−γ
max − k1−γ

min

∫ κ

kmin

kβ−γdk =
(1− γ)κ−β

(
κ1+β−γ − kmin

1+β−γ)
(1 + β − γ)

(
k1−γ

max − k1−γ
min

) ,

(D.18)

while for the second part of Eq. (D.17) we obtain:

∫ kmax

κ

P (k)dk =
k1−γ

max − κ1−γ

k1−γ
max − k1−γ

min

. (D.19)

For the rest of Eq. (D.15) we first note that we can simplify the integration by

changing the bounds in the following way:

∫ kmax

kmin

(
1−min

(
1, (k/κ)β

))
z(k)dk =

∫ κ

kmin

(
1− (k/κ)β

)
z(k)dk, (D.20)

where z(k) is some function of k. We use this simplification in Eq. (D.15) for the

second integral and for the expression in the square brackets. First, the expression
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in the square brackets of Eq. (D.15) is calculated as follows:

∫ kmax

kmin

(
1−min

(
1, (k′/κ)β

)) k′P (k′)

〈k〉
dk′ =

∫ κ

kmin

(
1− (k/κ)β

) k′P (k′)

〈k〉
dk =

=
C

〈k〉

[∫ κ

kmin

k′1−γdk′ − κ−β
∫ κ

kmin

k′1+β−γdk′
]

=

=
2− γ

k2−γ
max − k2−γ

min

[
κ2−γ − k2−γ

min

2− γ
− κ−β κ

2+β−γ − k2+β−γ
min

2 + β − γ

]
=

=
κ2−γ − k2−γ

min

k2−γ
max − k2−γ

min

− (2− γ)κ−β

2 + β − γ

(
κ2+β−γ − k2+β−γ

min

k2−γ
max − k2−γ

min

)
. (D.21)

We introduce a variable for this expression to simplify further calculations:

a :=
κ2−γ − k2−γ

min

k2−γ
max − k2−γ

min

− (2− γ)κ−β

2 + β − γ

(
κ2+β−γ − k2+β−γ

min

k2−γ
max − k2−γ

min

)
. (D.22)

Then the second integral of Eq. (D.15), corresponding to 〈Y 〉/N , can be calculated

as:∫ kmax

kmin

(
1−min

(
1, (k/κ)β

))
P (k)akdk =

∫ κ

kmin

(
1− (k/κ)β

)
P (k)akdk =

= C

[∫ κ

kmin

k−γakdk − κ−β
∫ κ

kmin

kβ−γakdk

]
=

=
C(− log a)γ

log a
[Γ(1− γ,−κ log a)− Γ(1− γ,−kmin log a)] +

+
C(− log a)γ−βκ−β

log a
[Γ(1 + β − γ,−kmin log a)− Γ(1 + β − γ,−κ log a)] .

(D.23)

Replacing the incomplete gamma functions with exponential integrals we get:

∫ kmax

kmin

(
1−min

(
1, (k/κ)β

))
P (k)akdk =

= C
[
k1−γ

minEγ(−kmin log a)− κ1−γEγ(−κ log a)
]

+

+ Cκ−β
[
κ1+β−γEγ−β(−κ log a)− k1+β−γ

min Eγ−β(−kmin log a)
]
. (D.24)
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Finally, we put all parts together and we obtain the estimated size of RDS as:

〈RDS〉
N

=
k1−γ

max − κ1−γ + (1− γ)
[
y1 + κ−β(x+ y2)

]
k1−γ

max − k1−γ
min

, (D.25)

with

x =
κ1+β−γ − k1+β−γ

min

1 + β − γ
(D.26)

y1 = k1−γ
minEγ(−kmin log a)− κ1−γEγ(−κ log a) (D.27)

y2 = κ1+β−γEγ−β(−κ log a)− k1+β−γ
min Eγ−β(−kmin log a) (D.28)

a =
κ2−γ − k2−γ

min

k2−γ
max − k2−γ

min

− (2− γ)κ−β

2 + β − γ

(
κ2+β−γ − k2+β−γ

min

k2−γ
max − k2−γ

min

)
. (D.29)

D.1.3 CDS

In case of CDS, the node selection probability is degree-dependent, and can

be expressed by a Heaviside step function: X(k) = Θ(k − κ), where κ is the degree

threshold above which all nodes are selected. When substituting into Eq. (D.4), we

can simply incorporate this by changing the integration bounds, thus we have:

〈CDS〉
N

=

∫ kmax

κ

P (k)dk +

∫ κ

kmin

P (k)

[∫ κ

kmin

k′P (k′)

〈k〉
dk′
]k

dk. (D.30)

Substituting the expression of the average degree and the power-law degree distribu-

tion in the expression inside the sqare brackets in Eq. (D.30) gives:

∫ κ

kmin

k′P (k′)

〈k〉
dk′ =

2− γ
k2−γ

max − k2−γ
min

∫ κ

kmin

k′1−γdk′ =
κ2−γ − k2−γ

min

k2−γ
max − k2−γ

min

. (D.31)

We denote this expression to simplify further calculations:

b :=
κ2−γ − k2−γ

min

k2−γ
max − k2−γ

min

, (D.32)
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thus we have for the second part of Eq. (D.30):

∫ κ

kmin

P (k)

[∫ κ

kmin

k′P (k′)

〈k〉
dk′
]k

dk =

∫ κ

kmin

P (k)bkdk = C

∫ κ

kmin

k−γbkdk =

=
1− γ

k1−γ
max − k1−γ

min

[
k1−γ

minEγ(−kmin log b)− κ1−γEγ(−κ log b)
]
. (D.33)

For the first integral in Eq. D.30 we have:

∫ kmax

κ

P (k)dk = C

∫ kmax

κ

k−γdk =
k1−γ

max − κ1−γ

k1−γ
max − k1−γ

min

, (D.34)

therefore we have for the estimated size of CDS:

〈CDS〉
N

=
k1−γ

max − κ1−γ + (1− γ)[k1−γ
minEγ(−kmin log b)− κ1−γEγ(−κ log b)]

k1−γ
max − k1−γ

min

. (D.35)

D.1.4 Comparison of Analytical and Numerical Dominating Set Sizes

By evaluating the analytical formulas we can find the expected size of RDS and

CDS without the need to perform numerical calculations (the actual dominating set

selection algorithms) on the network. Figures D.1, D.2, and D.3 show the accuracy

of the analytical curves in comparison with the numerical ones.

The accuracy of our analytical estimates for RDS and CDS seem to be lower

for low 〈k〉 and γ values. This inaccuracy is an artifact of our average degree control

method, which controls 〈k〉 by adjusting kmin, and removing a certain fraction of

smallest degree nodes. The latter becomes significant when kmin → 1 (for low 〈k〉),
because it causes a slight deviation from a perfect power-law degree distribution.

In order to use the analytical formulas (which are very sensitive to kmin), we have

to estimate a fractional kmin, as if it were a cutoff of a continuous and otherwise

perfectly satisfied power-law distribution. In reality, we deviate from power-law,

leading to inaccuracy. However, as 〈k〉 increases, kmin also increases, and the relative

deviation from a perfect power-law decreases, hence the increased accuracy. The

implication for real networks is that we can expect similarly less accurate estimates

if the degree distribution deviates from power-law.
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Figure D.1: Analytical estimates vs. numerical results of RDS with
degree-independent node selection probability. The figures
represent averaged data over 50 network samples of uncorre-
lated (cCONF) scale-free networks with N = 5000 and various
〈k〉 and γ values.
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Figure D.2: Analytical estimates vs. numerical results of RDS with
degree-dependent node selection probability. The figures
represent averaged data over 50 network samples of uncorre-
lated (cCONF) scale-free networks with N = 5000 and various
〈k〉 and γ values.
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Figure D.3: Analytical estimates vs. numerical results of CDS. The fig-
ures represent averaged data over 50 network samples of un-
correlated (cCONF) scale-free networks with N = 5000 and
various 〈k〉 and γ values. The curves start at nonzero κ val-
ues, because the smallest cutoff that can be applied is the
minimum degree, kmin. Similarly, the largest possible κ value
is the maximum degree, kmax.
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D.1.5 Exponential Integral Function

The usage of exponential integrals instead of incomplete gamma functions in

the estimates of RDS and CDS is justified not only by mathematical aesthetics, but

also by numerical computational issues. Notice, in Eq. (D.11), that the first argument

of the incomplete gamma function is negative. There are very few numerical libraries

that can compute gamma functions with such arguments. On the other hand, an

exponential integral function can be computed numerically as:

Eγ(z) =

∫ ∞
1

e−ztt−γdt = zγ−1Γ(1− γ) +
∞∑
n=0

(−1)nzn

n!(γ − 1− n)
(D.36)

Here, we only need to compute the regular gamma function with a negative argument,

which is readily available in most numerical libraries. There are two issues, however,

that we must consider. First, notice that for integer γ values Γ(1 − γ) evaluates

to complex infinity. This can be avoided by simply adding a very small number

to integer γ values. For example, if γ = 3, we use γ = 3.01 instead during the

calculation, which has only a negligible effect on the final estimated RDS or CDS size.

Second, notice that when the infinite sum is truncated, the result will always diverge

for large enough arguments; it diverges to positive infinity if the sum is terminated

at an odd n number, and it diverges to negative infinity when the sum is terminated

at an even n number. However, the true exponential integral always converges to

zero very quickly. We can use this to our advantage. We make sure the sum diverges

to negative infinity by running the sum up to an even number. In this case, if our

calculated exponential integral is a negative value, we can simply return zero instead,

since we know the true value should never be negative. We just need to make sure

that we have added sufficiently many terms, such that we have accurate calculated

values up to several decimal digits, before the divergence occurs, and we truncate to

zero. Considering both the accuracy requirement, and the limits of precision and

representability of floating point numbers (especially for the n! in the denominator),

we use n = 12 as the summation limit. Figure D.4 below illustrates the achieved

numerical accuracy of calculating the exponential integral.
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Figure D.4: Numerical estimates of the exponential integral function at
various truncations of the infinite sum. For high enough and
even n values we accept the calculated value of the expo-
nential integral if it is positive, or return zero if negative,
because the true exponential integral function converges to
zero quickly.

D.2 Impact of Assortativity on RDS and CDS in Artificial

Networks

We present here the comparison of dominating set sizes as a function of network

assortativity, for CONF and cCONF networks, in Figs. D.5 and D.6, respectively.

Various levels of assortativity are obtained by using our edge-mixing method with

biased double edge-swaps, detailed in Section 4.5.



188

Figure D.5: Comparison of the sizes of dominating sets against assorta-
tivity, measured by Spearman’s ρ. Each tile shows the fol-
lowing: probabilistic dominating set with uniform selection
probability (RDS), cutoff dominating set (CDS), greedy min-
imum dominating set (MDS), degree-ranked dominating set
(DDS). N = 5000, CONF networks, averaged over 100 samples
at each data point. Analytical estimates of RDS and CDS
are provided by Eq. (D.14) and Eq. (D.35), respectively. The
missing tile has network parameters that cannot be realized.
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Figure D.6: Comparison of the sizes of dominating sets against assorta-
tivity, measured by Spearman’s ρ. Each tile shows the fol-
lowing: probabilistic dominating set with uniform selection
probability (RDS), cutoff dominating set (CDS), greedy min-
imum dominating set (MDS), degree-ranked dominating set
(DDS). N = 5000, cCONF networks, averaged over 100 sam-
ples at each data point. Analytical estimates of RDS and
CDS are provided by Eq. (D.14) and Eq. (D.35), respectively.
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D.3 Impact of Assortativity on RDS and CDS in Real Net-

works

We analyzed the effect of changing assortativity on the dominating sets of real

network samples. For each sample, we used the original network as a starting point,

and used our assortativity control method (mixing edges by biased double edge-swaps)

to achieve a certain desired assortativity level, measured by Spearman’s ρ. We show

the comparison of dominating set sizes for the following networks:

• Gnutella-08: A peer-to-peer network downloaded from the Stanford Large Net-

work Dataset Collection [230]. It has directed edges that we have symmetrized

to obtain an undirected network.

• Flickr: Social network of Flickr users, where edges represent either friendship

or who-follows-whom relationship (symmetrized)

• Foursquare: Friendship network of Foursquare users.

The Flickr and Foursquare networks were collected at Rensselear Polytechnic Institute

using BFS crawling. These networks are undirected and unweighted.
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Figure D.7: Dominating sets as a function of Spearman’s ρ assortativity
measure in the Flickr network. Properties: N = 248000, γ =
1.5 and 〈k〉 = 32.9.
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Figure D.8: Dominating sets as a function of Spearman’s ρ assortativity
measure in the Foursquare network. Properties: N = 115201,
γ = 1.9 and 〈k〉 = 4.7.
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Figure D.9: Dominating sets as a function of Spearman’s ρ assortativity
measure in Gnutella network [230]. Properties: N = 6301,
γ = 4.7 and 〈k〉 = 6.6.



APPENDIX E

Damage-Resilient Dominating Sets

E.1 Finding a Flexible-Redundancy Dominating Set (frDS)

The algorithm for finding a flexible-redundancy dominating set (frDS) is based

on greedy search. At each step we add one node to the dominating set, which helps

the maximal number of nodes to advance toward their required domination goals.

There are several variables that we must define and track for each node.

First, we define the domination requirement r(i) as the number of required

dominators for node i among its closed neighbors. This value is calculated and

assigned randomly for each node before the search begins. The requirement is set

to either brc or dre (where r is the global requirement for the entire network), the

probability for the latter is exactly the fractional part of r (that is, r − brc). Note,

that r(i) can be zero if r < 1, and it is also possible that r > d(i) + 1 (where d(i) is

the degree of node i), in which case all nodes in the closed neighborhood are required

to be in the dominating set.

Second, we define score(i) as the current number of dominators of node i at

any given step. Initially, score(i) = 0 for every node, and it increases by one in the

closed neighborhood of the selected node.

Finally, we track the dominating potential(i) of node i, which counts how

many nodes in the closed neighborhood of i have not yet reached their domination

requirement. Specifically, potential(i) =
∑

j∈N+(i) I[score(j) < r(j)], where N+(i)

is the closed neighborhood of i and I[x] is an indicator function that returns 1 if

x is true and 0 else. In other words, the potential is the number of nodes in the

closed neighborhood that can be advanced toward their goal by selecting i as the

next dominator. The greedy search is based on this quantity: at every step we select

a node with maximum potential (with random tie-breaking among the candidates).

The key to implementing the algorithm with optimal time complexity is the use

of an efficient data structure for maintaining a list of nodes sorted by their potentials.

Note that the potential is an integer value between 0 and N + 1, therefore we can use

192
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bucket-sort for initial sorting. We assign one bucket for each possible potential value,

and we implement each bucket by a hashed set. This way we can add or remove

a node from any bucket in O(1) step, therefore we can perform the initial sorting

in O(N) and maintain sortedness in O(1) step after any single change in a node’s

potential.

The time complexity of the algorithm can be found by analyzing the changes

in scores and potentials of nodes. The initial calculation of potentials requires a loop

over all nodes’ all neighbors. Assuming we can enumerate the neighbors of node i in

d(i) steps, this calculation takes
∑

i∈V (G) 1 + d(i) = 2E +N = O(E) steps. Then in

the main loop one node is selected at every step, which increases the score of the

selected node and its neighbors by one. In principle, the scores could increase until

all nodes are selected (e.g., when r > N), therefore again all nodes’ all neighbors are

processed, taking O(E) steps. However, during this procedure, there are additional

steps for updating the node potentials. Some (usually all) nodes will reach their

predefined requirement at one point or another, after which the dominating potentials

change. We count these changes as follows. Initially, all nodes can increase all their

neighbors’ score toward their requirement (including the nodes themselves), therefore

the initial sum of potentials is
∑

i∈V (G) 1 +d(i) = 2E+N , or less, if some nodes have

zero requirement. The potential of a node can either be reduced by one if a neighbor

reaches its requirement (and thus that neighbor can no longer be advanced to its

goal by the current node), or it becomes zero by definition if the node is actually

selected. At most, there are 2E + N = O(E) changes (reductions) of potentials,

each computed in O(1) time (maintaining sortedness of nodes after each change),

therefore during the procedure there are at most O(E) additional steps for updating

node potentials. This means the entire algorithm runs in O(E) steps. Note that in

sparse networks, O(E) = O(N).
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Algorithm 2 Find an frDS

procedure frDS(G: graph, r: domination redundancy)
finished← 0
for all i ∈ V (G) do . initialization of score, r, and potential

score(i)← 0
potential(i)← 0
if Random(0, 1) < r − brc then

r(i)← dre
else

r(i)← brc
end if
if score(i) ≥ r(i) then

finished← finished+ 1
end if

end for
for all i ∈ V (G) do . initial calculation of potentials

for all j : (i, j) ∈ E(G) do
if score(j) < r(j) then

potential(i)← potential(i) + 1
end if

end for
if score(i) < goal(i) then

potential(i)← potential(i) + 1
end if

end for . Alg. continues on the next page
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while finished < |V (G)| ∧max(potential) > 0 do . main loop
k := random node with maximum potential . greedy step
Add k to Dominating Set . construct the output
score(k)← score(k) + 1 . count self-domination
potential(k)← 0 . remove k from further consideration
change← score(k) = r(k) . requirement of k reached in this iteration?
if change then

finished← finished+ 1
end if
for all j : (j, k) ∈ E(G) do . update neighbors of k

if change then . neighbors cannot increase score(k) any more
potential(j)← max(0, potential(j)− 1)

end if
score(j)← score(j) + 1 . k adds domination score to all its neighbors
if score(j) = r(j) then . requirement reached for the neighbor?

finished← finished+ 1
potential(j)← max(0, potential(j)− 1)
for all x : (x, j) ∈ E(G) do . update second neighbors

if x 6= k then . skip when second neighbor is k
potential(x)← max(0, potential(x)− 1)

end if
end for

end if
end for

end while
end procedure
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E.2 Finding a Flexible-Cost Dominating Set (fcDS)

The fcDS algorithm is also a form of greedy search, since it builds the dominating

set by selecting one node at a time with maximum potential, similarly to the frDS

algorithm. However, in this method the potential is calculated from the changes in

probability of losing all dominators for the nodes in the neighborhood of the given

node.

First, we define strength(i) for each node i as an input (0 < strength(i) < 1),

which defines the probability of not losing node i after the anticipated damage:

strength(i) := Pr(i is not lost). (E.1)

We also keep a record of instability(i) for each node i, which is defined as the

probability of losing all dominators after the damage has occured:

instability(i) =
∏

j∈DS∩N+(i)

1− strength(j). (E.2)

Initially, instability(i) = 1.0 for all i. The potential(i) of node i, which is used in

the greedy node selection, is calculated as the sum of the changes in instabilities

over the closed neighborhood of node i, if i was selected:

potential(i) = −
∑

j∈N+(i)

instability(j) Pr(i is lost)− instability(j)

= −
∑

j∈N+(i)

instability(j) [Pr(i is lost)− 1]

=
∑

j∈N+(i)

instability(j) · strength(i). (E.3)

Note, that the negative sign is manually inserted to make the potential a positive

value, for practical reasons. Without it, the change in instabilities would be negative,

because by each node selection the stability always increases.

With the definition above, we select a node with maximum potential at each

greedy step. After the node has been selected and added to the dominating set,

the instabilities in the closed neighborhood, and the potentials for all nodes in the
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second neighborhood of the selected node must be recalculated, and the nodes must

be sorted again based on the new potentials. Since the potentials are non-integer

values (and cannot be mapped to integers) we can only use comparative sorting,

where it takes O(logN) steps to find the new place for each node in the list. With a

simple approximation for sparse networks, a node in a network with average degree

d will have O(d2) nodes in its second neighborhood, therefore the selection of each

dominator involves O(d2 logN) steps.

Algorithm 3 Find an fcDS

procedure fcDS(G: graph, strength: array, c: number of nodes to select)
for all i ∈ V (G) do . initialization of instability and potential

instability(i)← 1.0
potential(i)← (degree(i) + 1)(1− strength(i))

end for
for a← 1 ... c do . a simply counts the output

k ← random node with maximum potential . greedy selection
Add k to Dominating Set . construct the output
S ← ∅ . set of nodes whose potential must be updated
instability(k)← instability(k)(1− strength(k)) . update self instability
for all j : (k, j) ∈ E(G) do

instability(j)← instability(j)(1− strength(k) . update instability of
neighbors

S ← S ∪ {j} . request potential update for j
for all i : (j, i) ∈ E(G) do

S ← S ∪ {i} . request potential update for second neighbors
end for

end for
for all i ∈ S do . update potentials

potential(i)← 0
if i /∈ Dominating Set then

for all j : (i, j) ∈ E(G) do
potential(i)← potential(i) + instability(j)strength(i)

end for
potential(i)← potential(i) + instability(i)strength(i)

end if
end for

end for
end procedure
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E.3 Dependence of Domination Stability on Degree Expo-

nent and Assortativity
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Figure E.1: Stability of dominating sets vs. power-law degree exponent γ
and Spearman’s ρ assortativity measure. (a) and (c) present
random node removal, (b) and (d) show degree-ranked node
removal. The insets illustrate the sizes of the corresponding
dominating sets. In (a) and (b): ρ = 0.0; in (c) and (d):
γ = 2.5. Common parameters: N = 5000, 〈k〉 = 8, f = 0.3.
Results are averaged over 200 network samples.
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Figure E.2: Comparison of size and stability of dominating sets vs.
power-law degree exponent, at various fractions of random
node removal. Synthetic networks, N = 5000, 〈k〉 = 8, ρ = 0.0.
Results are averaged over 200 network samples.
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Figure E.3: Comparison of size and stability of dominating sets vs.
power-law degree exponent at various fractions of degree
ranked node removal. Synthetic networks, N = 5000, 〈k〉 = 8,
ρ = 0.0. Results are averaged over 200 network samples.
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Figure E.4: Comparison of size and stability of dominating sets vs. assor-
tativity at various fractions of random node removal. Syn-
thetic networks, N = 5000, 〈k〉 = 8, γ = 2.5. Results are
averaged over 200 network samples.
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Figure E.5: Comparison of size and stability of dominating sets vs. assor-
tativity at various fractions of degree-ranked node removal.
Synthetic networks, N = 5000, 〈k〉 = 8, γ = 2.5. Results are
averaged over 200 network samples.
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E.4 Stability of Partial Flexible-Redundancy Dominating

Sets

Figure E.6: Stability of partial frDS against random damage, as a func-
tion of redundancy level and dominating set size, at various
power-law degree exponents and Spearman’s ρ values. Syn-
thetic networks, N = 5000, damage fraction f = 0.1.
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Figure E.7: Stability of partial frDS against random damage, as a func-
tion of redundancy level and dominating set size, at various
power-law degree exponents and Spearman’s ρ values. Syn-
thetic networks, N = 5000, damage fraction f = 0.3.
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Figure E.8: Stability of partial frDS against random damage, as a func-
tion of redundancy level and dominating set size, at various
power-law degree exponents and Spearman’s ρ values. Syn-
thetic networks, N = 5000, damage fraction f = 0.5.
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Figure E.9: Stability of partial frDS against targeted attack, as a function
of redundancy level and dominating set size, at various power-
law degree exponents and Spearman’s ρ values. Synthetic
networks, N = 5000, damage fraction f = 0.1.
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Figure E.10: Stability of partial frDS against targeted attack, as a func-
tion of redundancy level and dominating set size, at various
power-law degree exponents and Spearman’s ρ values. Syn-
thetic networks, N = 5000, damage fraction f = 0.3.
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Figure E.11: Stability of partial frDS against targeted attack, as a func-
tion of redundancy level and dominating set size, at various
power-law degree exponents and Spearman’s ρ values. Syn-
thetic networks, N = 5000, damage fraction f = 0.5.
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E.5 Size of Flexible-Redundancy Dominating Sets

Figure E.12: Size of frDS as a function of domination redundancy, at var-
ious power-law degree exponents and Spearman’s ρ values,
in synthetic networks with N = 5000. The sizes of MDS,
CDS, and DDS are shown for comparison.
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E.6 Stability Comparison of frDS and fcDS against Domi-

nating Set Size

Figure E.13: Stability of frDS and fcDS against random damage, as a
function of dominating set size (cost), at various power-law
degree exponents and Spearman’s ρ values, in synthetic net-
works with N = 5000. The stabilities of MDS, CDS, and
DDS are shown for comparison at their corresponding set
sizes. Black legend symbols refer to the shape only, colors
refer to damage fractions.
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Figure E.14: Stability of frDS and fcDS against targeted attack, as a
function of dominating set size (cost), at various power-law
degree exponents and Spearman’s ρ values, in synthetic net-
works with N = 5000. The stabilities of MDS, CDS, and
DDS are shown for comparison at their corresponding set
sizes. Black legend symbols refer to the shape only, colors
refer to damage fractions.
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E.7 Degree Distributions of Real Networks Used in Domi-

nation Stability Analysis
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Figure E.15: Degree distribution of Gnutella08 network [230] on linear
scale.
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Figure E.16: Degree distribution of Gnutella08 network [230] on double-
logarithmic scale.
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Figure E.17: Degree distribution of Gnutella08 network [230] on log-
linear scale.
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Figure E.18: Degree distribution of ENTSO-E powergrid [239, 240] on
linear scale.
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Figure E.19: Degree distribution of ENTSO-E powergrid [239, 240] on
double-logarithmic scale.
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Figure E.20: Degree distribution of ENTSO-E powergrid [239, 240] on
log-linear scale.
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E.8 Brief Analysis of the Brain Graph Dataset

Table E.1: Sample numbers of brain graphs that we use to identify them
in our figures. Graph data files are available at [241].

# graph # graph
1 KKI-21 KKI2009-01 big graph w inv 51 MRN114 M87114047 big graph w inv
2 KKI-21 KKI2009-02 big graph w inv 52 MRN114 M87114064 big graph w inv
3 KKI-21 KKI2009-03 big graph w inv 53 MRN114 M87115498 big graph w inv
4 KKI-21 KKI2009-04 big graph w inv 54 MRN114 M87115517 big graph w inv
5 KKI-21 KKI2009-05 big graph w inv 55 MRN114 M87117119 big graph w inv
6 KKI-21 KKI2009-06 big graph w inv 56 MRN114 M87117167 big graph w inv
7 KKI-21 KKI2009-07 big graph w inv 57 MRN114 M87120962 big graph w inv
8 KKI-21 KKI2009-08 big graph w inv 58 MRN114 M87121943 big graph w inv
9 KKI-21 KKI2009-09 big graph w inv 59 MRN114 M87121956 big graph w inv
10 KKI-21 KKI2009-10 big graph w inv 60 MRN114 M87122092 big graph w inv
11 KKI-21 KKI2009-11 big graph w inv 61 MRN114 M87123042 big graph w inv
12 KKI-21 KKI2009-12 big graph w inv 62 MRN114 M87123449 big graph w inv
13 KKI-21 KKI2009-13 big graph w inv 63 MRN114 M87123913 big graph w inv
14 KKI-21 KKI2009-14 big graph w inv 64 MRN114 M87124633 big graph w inv
15 KKI-21 KKI2009-15 big graph w inv 65 MRN114 M87124781 big graph w inv
16 KKI-21 KKI2009-16 big graph w inv 66 MRN114 M87124827 big graph w inv
17 KKI-21 KKI2009-17 big graph w inv 67 MRN114 M87125134 big graph w inv
18 KKI-21 KKI2009-18 big graph w inv 68 MRN114 M87128444 big graph w inv
19 KKI-21 KKI2009-19 big graph w inv 69 MRN114 M87129719 big graph w inv
20 KKI-21 KKI2009-20 big graph w inv 70 MRN114 M87129789 big graph w inv
21 KKI-21 KKI2009-21 big graph w inv 71 MRN114 M87131806 big graph w inv
22 KKI-21 KKI2009-22 big graph w inv 72 MRN114 M87134068 big graph w inv
23 KKI-21 KKI2009-23 big graph w inv 73 MRN114 M87135647 big graph w inv
24 KKI-21 KKI2009-24 big graph w inv 74 MRN114 M87136332 big graph w inv
25 KKI-21 KKI2009-25 big graph w inv 75 MRN114 M87136832 big graph w inv
26 KKI-21 KKI2009-26 big graph w inv 76 MRN114 M87139021 big graph w inv
27 KKI-21 KKI2009-27 big graph w inv 77 MRN114 M87139257 big graph w inv
28 KKI-21 KKI2009-28 big graph w inv 78 MRN114 M87141220 big graph w inv
29 KKI-21 KKI2009-29 big graph w inv 79 MRN114 M87141664 big graph w inv
30 KKI-21 KKI2009-30 big graph w inv 80 MRN114 M87141793 big graph w inv
31 KKI-21 KKI2009-31 big graph w inv 81 MRN114 M87141858 big graph w inv
32 KKI-21 KKI2009-32 big graph w inv 82 MRN114 M87141906 big graph w inv
33 KKI-21 KKI2009-33 big graph w inv 83 MRN114 M87141949 big graph w inv
34 KKI-21 KKI2009-34 big graph w inv 84 MRN114 M87142764 big graph w inv
35 KKI-21 KKI2009-35 big graph w inv 85 MRN114 M87143273 big graph w inv
36 KKI-21 KKI2009-36 big graph w inv 86 MRN114 M87144889 big graph w inv
37 KKI-21 KKI2009-37 big graph w inv 87 MRN114 M87144896 big graph w inv
38 KKI-21 KKI2009-38 big graph w inv 88 MRN114 M87145479 big graph w inv
39 KKI-21 KKI2009-39 big graph w inv 89 MRN114 M87145575 big graph w inv
40 KKI-21 KKI2009-40 big graph w inv 90 MRN114 M87146520 big graph w inv
41 KKI-21 KKI2009-41 big graph w inv 91 MRN114 M87146993 big graph w inv
42 KKI-21 KKI2009-42 big graph w inv 92 MRN114 M87147006 big graph w inv
43 MRN114 M87102217 big graph w inv 93 MRN114 M87148745 big graph w inv
44 MRN114 M87102806 big graph w inv 94 MRN114 M87149014 big graph w inv
45 MRN114 M87103074 big graph w inv 95 MRN114 M87149025 big graph w inv
46 MRN114 M87105476 big graph w inv 96 MRN114 M87150194 big graph w inv
47 MRN114 M87107085 big graph w inv 97 MRN114 M87150415 big graph w inv
48 MRN114 M87108094 big graph w inv 98 MRN114 M87150639 big graph w inv
49 MRN114 M87111487 big graph w inv 99 MRN114 M87151117 big graph w inv
50 MRN114 M87111924 big graph w inv 100 MRN114 M87151146 big graph w inv
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# graph # graph
101 MRN114 M87151453 big graph w inv 151 MRN114 M87192995 big graph w inv
102 MRN114 M87152844 big graph w inv 152 MRN114 M87193409 big graph w inv
103 MRN114 M87153569 big graph w inv 153 MRN114 M87196363 big graph w inv
104 MRN114 M87154559 big graph w inv 154 MRN114 M87196591 big graph w inv
105 MRN114 M87155496 big graph w inv 155 MRN114 M87199297 big graph w inv
106 MRN114 M87155949 big graph w inv 156 MRN114 M87199728 big graph w inv
107 MRN114 M87156106 big graph w inv 157 NKI-TRT 0021001 1 big graph w inv
108 MRN114 M87157827 big graph w inv 158 NKI-TRT 0021001 2 big graph w inv
109 MRN114 M87158338 big graph w inv 159 NKI-TRT 0021002 1 big graph w inv
110 MRN114 M87158534 big graph w inv 160 NKI-TRT 0021002 2 big graph w inv
111 MRN114 M87159410 big graph w inv 161 NKI-TRT 0021006 1 big graph w inv
112 MRN114 M87159580 big graph w inv 162 NKI-TRT 0021006 2 big graph w inv
113 MRN114 M87160332 big graph w inv 163 NKI-TRT 0021018 1 big graph w inv
114 MRN114 M87160375 big graph w inv 164 NKI-TRT 0021018 2 big graph w inv
115 MRN114 M87161235 big graph w inv 165 NKI-TRT 0021024 1 big graph w inv
116 MRN114 M87161902 big graph w inv 166 NKI-TRT 0021024 2 big graph w inv
117 MRN114 M87162915 big graph w inv 167 NKI-TRT 1427581 2 big graph w inv
118 MRN114 M87164412 big graph w inv 168 NKI-TRT 1793622 1 big graph w inv
119 MRN114 M87164886 big graph w inv 169 NKI-TRT 1793622 2 big graph w inv
120 MRN114 M87165017 big graph w inv 170 NKI-TRT 1961098 1 big graph w inv
121 MRN114 M87165441 big graph w inv 171 NKI-TRT 1961098 2 big graph w inv
122 MRN114 M87166115 big graph w inv 172 NKI-TRT 2475376 1 big graph w inv
123 MRN114 M87168759 big graph w inv 173 NKI-TRT 2475376 2 big graph w inv
124 MRN114 M87174803 big graph w inv 174 NKI-TRT 2799329 1 big graph w inv
125 MRN114 M87176019 big graph w inv 175 NKI-TRT 2799329 2 big graph w inv
126 MRN114 M87176708 big graph w inv 176 NKI-TRT 2842950 1 big graph w inv
127 MRN114 M87178630 big graph w inv 177 NKI-TRT 2842950 2 big graph w inv
128 MRN114 M87179511 big graph w inv 178 NKI-TRT 3201815 1 big graph w inv
129 MRN114 M87179597 big graph w inv 179 NKI-TRT 3201815 2 big graph w inv
130 MRN114 M87179713 big graph w inv 180 NKI-TRT 3313349 1 big graph w inv
131 MRN114 M87181205 big graph w inv 181 NKI-TRT 3313349 2 big graph w inv
132 MRN114 M87181216 big graph w inv 182 NKI-TRT 3315657 1 big graph w inv
133 MRN114 M87182922 big graph w inv 183 NKI-TRT 3315657 2 big graph w inv
134 MRN114 M87183189 big graph w inv 184 NKI-TRT 3795193 1 big graph w inv
135 MRN114 M87183485 big graph w inv 185 NKI-TRT 3795193 2 big graph w inv
136 MRN114 M87184910 big graph w inv 186 NKI-TRT 3808535 1 big graph w inv
137 MRN114 M87185000 big graph w inv 187 NKI-TRT 3808535 2 big graph w inv
138 MRN114 M87186642 big graph w inv 188 NKI-TRT 3893245 2 big graph w inv
139 MRN114 M87187090 big graph w inv 189 NKI-TRT 4176156 1 big graph w inv
140 MRN114 M87187750 big graph w inv 190 NKI-TRT 4176156 2 big graph w inv
141 MRN114 M87187984 big graph w inv 191 NKI-TRT 4288245 1 big graph w inv
142 MRN114 M87188000 big graph w inv 192 NKI-TRT 4288245 2 big graph w inv
143 MRN114 M87188762 big graph w inv 193 NKI-TRT 6471972 1 big graph w inv
144 MRN114 M87190609 big graph w inv 194 NKI-TRT 7055197 1 big graph w inv
145 MRN114 M87190745 big graph w inv 195 NKI-TRT 7055197 2 big graph w inv
146 MRN114 M87191087 big graph w inv 196 NKI-TRT 8574662 1 big graph w inv
147 MRN114 M87191258 big graph w inv 197 NKI-TRT 8735778 1 big graph w inv
148 MRN114 M87192333 big graph w inv 198 NKI-TRT 8735778 2 big graph w inv
149 MRN114 M87192557 big graph w inv 199 NKI-TRT 9630905 1 big graph w inv
150 MRN114 M87192637 big graph w inv 200 NKI-TRT 9630905 2 big graph w inv
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Figure E.21: Average degree in brain graphs. See Table E.1 for sample
numbers.
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Figure E.22: Assortativity of brain graphs. See Table E.1 for sample
numbers.
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Figure E.23: Degree distributions of 12 randomly picked brain graphs on
linear scale.
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Figure E.24: Degree distributions of 12 randomly picked brain graphs on
double-logarithmic scale.
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Figure E.25: Degree distributions of 12 randomly picked brain graphs on
log-linear scale.
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Figure E.26: Comparison of dominating set sizes in brain graphs. See
Table E.1 for sample numbers.
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E.9 Effects of Changing Assortativity on frDS in Real Net-

works
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Figure E.27: Dominating set sizes vs. assortativity in Gnutella08
graph [230], achieved by random (biased) mixing of exges
by double-edge swaps. The vertical dashed line indicates
the assortativity of the original graph.
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Figure E.28: Dominating set sizes vs. assortativity in powergrid
graph [239, 240], achieved by random (biased) mixing of
exges by double-edge swaps. The vertical dashed line indi-
cates the assortativity of the original graph.
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Figure E.29: Dominating set sizes vs. assortativity in brain graph KKI-
21 KKI2009-19 [24, 241], achieved by random (biased) mix-
ing of edges by double-edge swaps. The vertical dashed line
indicates the assortativity of the original graph. Note that
frDS curves with r = 2 and r = 3 overlap.


