Hindawi Publishing Corporation
Scientific Programming vol. 2015 (2015)
Article ID 461362

Research Article

Hindawi

Parallelizing SLPA for Scalable Overlapping

Community Detection

Konstantin Kuzmin,' Mingming Chen,' and Boleslaw K. Szymanski"*

'Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
*The Faculty of Computer Science and Management, Wroclaw University of Technology, 50-370 Wroctaw, Poland

Correspondence should be addressed to Konstantin Kuzmin; kuzmik@rpi.edu

Received 3 March 2014; Accepted 17 November 2014

Academic Editor: Przemyslaw Kazienko

Copyright © 2015 Konstantin Kuzmin et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Communities in networks are groups of nodes whose connections to the nodes in a community are stronger than with the nodes
in the rest of the network. Quite often nodes participate in multiple communities; that is, communities can overlap. In this paper,
we first analyze what other researchers have done to utilize high performance computing to perform efficient community detection
in social, biological, and other networks. We note that detection of overlapping communities is more computationally intensive
than disjoint community detection, and the former presents new challenges that algorithm designers have to face. Moreover, the
efficiency of many existing algorithms grows superlinearly with the network size making them unsuitable to process large datasets.
We use the Speaker-Listener Label Propagation Algorithm (SLPA) as the basis for our parallel overlapping community detection
implementation. SLPA provides near linear time overlapping community detection and is well suited for parallelization. We explore
the benefits of a multithreaded programming paradigm and show that it yields a significant performance gain over sequential
execution while preserving the high quality of community detection. The algorithm was tested on four real-world datasets with up
to 5.5 million nodes and 170 million edges. In order to assess the quality of community detection, at least 4 different metrics were

used for each of the datasets.

1. Introduction

Analysis of social, biological, and other networks is a field
which attracts significant attention as more and more algo-
rithms and real-world datasets become available. In social
science, a community is loosely defined as a group of individ-
uals who share certain common characteristics [1]. Based on
similarity of certain properties, social agents can be assigned
to different social groups or communities. Knowledge of
communities allows researchers to analyze social behaviors
and relations between people from different perspectives. As
social agents can exhibit traits specific to different groups
and play an important role in multiple groups, communities
can overlap. Usually, there is no a priori knowledge of
the number of communities and their sizes. Quite often,
there is no ground truth either. Knowing the community
structure of a network empowers many important appli-
cations. Communities can be used to model, predict, and

control information dissemination. Marketing companies,
advertisers, sociologists, and political activists are able to
target specific interest groups. The ability to identify key
members of a community provides a potential opportunity
to influence the opinion of the majority of individuals in
the community. Ultimately, the community opinion can be
changed when only a small fraction of the most influential
nodes accepts a new opinion [2].

Biological networks such as neural, metabolic, protein,
genetic, or pollination networks and food webs model
interactions between components of a system that represent
some biological processes [3]. Nodes in such networks often
correspond to genes, proteins, individuals, or species. Com-
mon examples of such interactions are infectious contacts,
regulatory interaction, and gene flow.

The majority of community detection algorithms operate
on networks which might have strong data dependencies
between the nodes. While there are clearly challenges in

designing an efficient parallel algorithm, the major factor
which limits the performance is scalability. Most frequently, a
researcher needs to have community detection performed for
a dataset of interest as fast as possible subject to the limitations
of available hardware platforms. In other words, for any given
instance of a community detection problem, the total size of
the problem is fixed while the number of processors varies
to minimize the solution time. This setting is an example
of a strong scaling computing. Since the problem size per
processor varies with the number of processors, the amount
of work per processor goes down as the number of processors
is increased. At the same time, the communication and
synchronization overhead does not necessarily decrease and
can actually increase with the number of processors, thus
limiting the scalability of the entire solution.

There is yet another facet of scaling community detection
solutions. As more and more hardware computing power
becomes available, it seems quite natural to try to uncover
the community structure of increasingly larger datasets.
Since more compute power currently tends to come rather
in a form of increased processor count than in a single
high performance processor (or a small number of such
processors), it is crucial to provide enough data for each
single processor to perform efficiently. In other words, the
amount of work per processor should be large enough so
that communication and synchronization overhead is small
relative to the amount of computation. Moreover, a well-
designed parallel solution should demonstrate performance
which at least does not degrade and perhaps even improves
when run on larger and larger datasets.

Accessing data that is shared between several processes
in a parallel community detection algorithm can easily
become a bottleneck. Several techniques have been studied,
including shared-nothing, master-slave, and data replication
approaches, each having its merits and drawbacks. Shared-
memory architectures make it possible to build solutions
that require no data replication at all since any data can be
accessed by any processor. One of the key design features of
our multithreaded approach is to minimize the amount of
synchronization and achieve a high degree of concurrency of
code running on different processors and cores. Provided that
the data is properly partitioned, the parallel algorithm that
we propose does not suffer performance penalties when pre-
sented with increasing amounts of data. Quite the contrary,
results show that, with larger datasets, the values of speedup
avoid saturation and continue to improve up to maximal
processor counts.

Validating the results of community detection algorithms
presents yet another challenging task. After running a com-
munity detection algorithm how do we know if the resulting
community structure makes any sense? If a network is known
to have some ground truth communities then the problem
is conceptually clear—we need to compare the output of the
algorithm with the ground truth. It might sound like an
easy problem to solve but in reality there are many possible
ways to compare different community structures of the same
network. Unfortunately, there is no one single method that
can be used in any situation. Rather a combination of metrics
can tell us how far our solution is from that represented by

Scientific Programming

the ground truth. As mentioned earlier, for many real-life
datasets it is not feasible to come up with any kind of ground
truth communities at all. Without them, comparative study
of values obtained from different metrics for community
structures output by different algorithms seems to be the only
way of judging the quality of community detection.

The rest of the paper is organized as follows. An overview
of relevant research on parallel community detection is
presented in Section 2. Section 3 provides an overview of
the sequential SLPA algorithm upon which we base our
parallel implementation. It also discusses details of the
multithreaded community detection on a shared-memory
multiprocessor machine along with busy-waiting techniques
and implicit synchronization used to ensure correct execu-
tion. We describe the way we partition the data and rearrange
nodes within a partition to maximize performance. We also
discuss the speedup and efficiency accomplished by our
approach. Detailed analysis of the quality of community
structures detected by our algorithm for four real-life datasets
relative to ground truth communities (when available) and
based on the sequential SLPA implementation is given in
Section 4. Finally, in Section 5, closing remarks and conclu-
sions are provided. We also discuss some of the limitations of
the presented solution and briefly describe future work.

2. Related Work

During the last decade substantial effort has been put into
studying network clustering and analysis of social and other
networks. Different approaches have been considered and
a number of algorithms for community detection have
been proposed. As online social communities and the net-
works associated with them continue to grow, the parallel
approaches to community detection are regarded as a way
to increase efficiency of community detection and therefore
receive a lot of attention.

The clique percolation technique [4] considers cliques
in a graph and performs community detection by finding
adjacent cliques. The k-means clustering algorithm partitions
m n-dimensional real vectors into k n-dimensional clusters
where every point is assigned to a cluster in such a way
that the objective function is minimized [5]. The objective
function is the within-cluster sum of squares of distances
between each point and the cluster center. There are several
ways to calculate initial cluster centers. A quick and simple
way to initialize cluster centers is to take the first k points
as the initial centers. Subsequently at every pass of the
algorithm the cluster centers are updated to be the means
of points assigned to them. The algorithm does not aim to
minimize the objective function for all possible partitions
but produces a local optimal solution instead, that is, a
solution in which for any cluster the within-cluster sum
of squares of distances between each point and the cluster
center cannot be improved by moving a single point from
one cluster to another. Another approach described in [6]
utilizes an iterative scan technique in which density function
value is gradually improved by adding or removing edges.
The algorithm implements a shared-nothing architectural

Scientific Programming

approach. The approach distributes data on all the computers
in a setup and uses master-slave architecture for clustering. In
such an approach, the master may easily become a bottleneck
when the application requires a large number of processors
because of the network size. A parallel clustering algorithm is
suggested in [7], which is a parallelized version of DBSCAN
(8].

A community detection approach based on propinquity
dynamics is described in [9]. It does not use any explicit
objective function but rather performs community detection
based on heuristics. It relies on calculating the values of
topology-based propinquity which is defined as a measure of
probability that two nodes belong to the same community.
The algorithm works by consecutively increasing the network
contrast in each iteration by adding and removing edges
in such a way as to make the community structure more
apparent. Specifically, an edge is added to the network if
it is not already present and the propinquity value of the
endpoints of this proposed edge is above a certain threshold,
called the emerging threshold. Similarly, if the propinquity
value of the endpoints of an existing edge is below a certain
value, called the cutting threshold, then this edge is removed
from the network. Since inserting and removing edges alters
the network topology; it affects not only propinquity between
individual nodes but also the overall propinquity of the entire
topology. The propinquity of the new topology can then be
calculated and used to guide the subsequent changes to the
topology in the next iteration. Thus, the whole process called
propinquity dynamics continues until the difference between
topologies obtained in successive iterations becomes small
relative to the whole network.

Since both topology and propinquity experience only
relatively small changes from iteration to iteration, it is
possible to perform the propinquity dynamics incrementally
rather than recalculating all propinquity values in each iter-
ation. Optimizations of performing incremental propinquity
updates achieve a running time complexity of O((|V| + |E]) -
|E|/|V]) for general networks and O(|V']) for sparse networks.

It is also shown in [9] that community detection with
propinquity dynamics can efficiently take advantage of paral-
lel computation using message passing. Nodes are distributed
among the processors which process them in parallel. Since it
is essential that all nodes are in sync with each other, the bulk
synchronous parallel (BSP) model is used to implement the
parallel framework. In this model, the computation is orga-
nized as a series of supersteps. Each superstep consists of three
major actions: receiving messages sent by other processors
during the previous superstep, performing computation, and
sending messages to other processors. Synchronization in
BSP is explicit and takes the form of a barrier which gathers all
the processors at the end of the superstep before continuing
with the next superstep. Two types of messages are defined for
the processors to communicate with each other. The first type
is used to update propinquity maps that each processor stores
locally for its nodes. Messages of the second type contain
parts of the neighbor sets that a processor needs in its local
computation.

A number of researchers explored a popular MapReduce
parallel programming model to perform network mining

operations. For example, a PeGaSus library (Peta-Scale Graph
Mining System) described in [10] is built upon using Hadoop
platform to perform several graph mining tasks such as
PageRank calculations, spectral clustering, diameter estima-
tion, and determining connected components. The core of
PeGaSus is a GIM-V function (generalized iterated matrix-
vector multiplication). GIM-V is capable of performing three
operations: combining two values, combining all the values
in the set, and replacing the old value with a new one.
Since GIM-V is general, it is also quite universal. All other
functions in the library are implemented as function calls to
GIM-V with proper custom definitions of the three GIM-V
operations. Fast algorithms for GIM-V utilize a number of
optimizations like using data compression, dividing elements
into blocks of fixed size, and clustering the edges. Finding
connected components with GIM-V is essentially equivalent
to community detection. The number of iterations required
to find connected components is at most the diameter of the
network. One iteration of GIM-V has the time complexity of
O(((IV] + |E)/P) log((IV| + |E|)/P)) where P is the number
of processors in the cluster. Running PeGaSus on an M45
Hadoop supercomputer cluster shows that GIM-V scales
linearly with the number of machines increasing from 3 to
90. Accordingly, PeGaSus is able to reduce time execution on
real-world networks containing up to hundreds of billions of
edges from many hours to a few minutes.

A HEigen algorithm introduced in [11] is an eigensolver
for large scale networks containing billions of edges. It is built
upon the same MapReduce parallel programming model as
PeGaSus and is capable of computing k eigenvalues for sparse
symmetric matrices. Similar to PeGaSus, HEigen scales
almost linearly with the number of edges and processors
and performs well in up to a billion edge scale networks. Its
asymptotic running time is the same as that of PeGaSus’ GIM-
V.

In [12] the authors consider a disjoint partitioning of
a network into connected communities. They propose a
massively parallel implementation of an agglomerative com-
munity detection algorithm that supports both maximizing
modularity and minimizing conductance. The performance
is evaluated on two different threaded hardware architectures:
a multiprocessor multicore Intel-based server and massively
multithreaded Cray XMT?2. This approach is shown to scale
well on two real-world networks with up to tens of millions
of nodes and several hundred million edges.

Another method for partitioning a network into disjoint
communities is scalable community detection (SCD) [13].
This two-phase algorithm works by optimizing the value of
an objective function and is capable of processing undirected
and unweighted graphs.

SCD uses the weighted community clustering (WCC)
metric proposed in [14] as the objective function. Instead of
performing simple edge counting, WCC works with more
sophisticated graph structures, such as triangles. The quality
of a partition is measured based on the number of triangles
in a graph. Intuitively, more connections between the nodes
within a community correspond to a larger number of
triangles. Communities tend to have many highly connected
nodes which are much more likely to close triangles with

each other rather than with nodes from other communities.
Thus, for a particular node and community the value of
WCC quantifies the level of cohesion of the node to the
community. The metric is defined not only for individual
nodes and communities but also for a community as a whole
and the entire partition. One of the advantages of WCC over
modularity is that it does not have a resolution limit prob-
lem. In addition, optimization of WCC is mathematically
guaranteed to produce cohesive and structured communities.
The measure of cohesion is defined for a partition as some
real-valued function f called degree of cohesion. For each
subset of nodes f assigns a value in the range [0, 1] such
that high values of f correspond to good communities and
low values of f correspond to bad communities. For a
given context (social, biological, etc.) an adequate metric f
captures the features specific to this context. For example,
for social networks the cohesion of a community depends
on the number of triangles closed by the nodes inside this
community. Furthermore, triangles are also used as a good
indicator of community structure.

The operation of SCD consists of two phases which are
executed sequentially. The first stage comprises graph cleanup
and initial partitioning. Cleanup is performed by removing
the edges which do not close any triangles. Then the graph is
partitioned based on the values of the clustering coefficient of
every node. Nodes are taken in the order of decreasing clus-
tering coefficient and placed in communities together with
their neighbors. Such partitioning yields communities with
high values of WCC which is beneficial for the subsequent
optimization process.

The second phase is responsible for the refinement of
the initial partition. WCC optimization process consists of
iterations which are repeated as long as the value of WCC for
the entire partition keeps improving. In order to improve the
value of WCC, the best of the following three movements is
chosen for each node. These are the only movements which
can potentially improve the WCC score:

(i) keep the network unchanged;

(ii) remove a node from its current community and place
it in its own singleton community;

(iii) move a node from one community to another.

After movements for all the nodes have been selected,
the WCC metric is calculated for the entire partition and
compared to the previous value to determine if there is an
overall improvement in the score. The refinement process
stops when there has been no improvement (or improvement
was less than a specified threshold) during the most recent
iteration.

Computing the value of WCC directly at each iteration
and for each node is computationally expensive and therefore
should be avoided, especially for high degree nodes. In order
to speed up calculations, it is possible to exploit the fact that
the refinement process operates using the improvement of the
score and therefore computing the absolute value of WCC
is not necessary. Instead of calculating WCC directly, SCD
uses certain graph statistics to build a WCC estimator. The

Scientific Programming

estimator evaluates the improvement of WCC only once per
iteration spending just O(1) time per node.

Assuming that graphs have a quasilinear relation between
the number of nodes and the number of edges, and the
number of iterations of the refinement process is a constant,
the overall running time complexity of SCD is O(m - log n),
where 7 is the number of nodes and m is the number of edges
in the graph.

The advantage of the SCD algorithm is its amenability
to parallelization. This is due to the fact that during the
optimization process improvements of WCC are considered
for every node individually and independently of other
nodes. Therefore, the best movement can be calculated for
all nodes simultaneously using whatever parallel features
the underlying computing platform has to offer. Moreover,
applying the moves to all nodes is also done in parallel.

SCD is implemented in C++ as a multithreaded applica-
tion which uses OpenMP API for parallelization. Concur-
rency during the refinement process is achieved by consid-
ering improvements of WCC and then applying movements
independently for each node. Benchmark datasets used in
experiments include a range of networks of different sizes:
Amazon, DBLP, Youtube, LiveJournal, Orkut, and Friendster.
All of these graphs contain ground truth communities which
are required to evaluate the quality of communities produced
by SCD.

Normalized mutual information (NMI) and average F,
score are used to evaluate the quality of community detection.
SCD is compared against the following algorithms: Infomap,
Louvain, Walktrap, BigClam, and Oslom. No distinction
is made between methods which perform only disjoint
community detection and those that are capable of detecting
overlapping communities. The output of each algorithm is
compared against ground truth communities without regard
to possible overlaps. Although the values of NMI and average
F, scores obtained for SCD are close to the results of other
algorithms, it outperforms its competition on almost all
datasets.

In terms of runtime performance, SCD is much faster
than the majority of other algorithms used in the experiment.
In a single threaded mode, the largest of the datasets used
(Friendster) was processed in about 12 hours. SCD scales
almost linearly with the number of edges in the graph. Using
multiple threads can reduce the processing time even further.
With 4 threads it takes a little bit over 4 hours to perform
community detection on the Friendster network. Although
the values of speedup are not explicitly presented, it can be
inferred that the advantage of using multiple threads varies
considerably depending on the dataset. The best case seems to
be the Orkut graph for which speedup grows linearly as the
number of threads is increased from 1 to 4. However, since
the scope of parallelization in the experiment is modestly
limited to just 4 threads, it is unclear how the scalability of
the multithreaded SCD behaves when more than 4 cores are
utilized.

A family of label propagation community detection
algorithms includes label propagation algorithm (LPA) [15],
community overlap propagation algorithm (COPRA) [16],
and speaker-listener label propagation algorithm (SLPA) [17].

Scientific Programming

The main idea is to assign identifiers to nodes and then make
them transmit their identifiers to their neighbors. With node
identifiers treated as labels, a label propagation algorithm
simulates the exchange of labels between connected nodes in
the network. At each step of the algorithm each and every
node that has at least one neighbor receives a label from
one of its neighbors. Nodes keep a history of labels that they
have ever received organized as a histogram which captures
the frequency (and therefore the rank) of each label. The
number of steps, or iterations, of the algorithm determines
the number of labels each node accumulates during the
label propagation phase. Being one of the parameters of
the algorithm, the number of iterations eventually affects
the accuracy of community detection. Clearly, the running
time of the label propagation phase is linear with respect
to the number of iterations. The algorithm is guaranteed to
terminate after a prescribed number of iterations. When it
does, communities data is extracted from nodes’ histories.

Staudt and Meyerhenke [18] proposed PLP, PLM, and
EPP algorithms for nonoverlapping community detection,
that is, determining a partitioning of the node set.

Parallel label propagation (PLP) algorithm is a variation
of the sequential LPA capable of performing detection of
nonoverlapping communities in undirected weighted graphs.
PLP differs from the original formulation of the label prop-
agation algorithm [15] in that it avoids explicitly randomiz-
ing the node order and relies instead on asynchronism of
concurrently executed PLP code threads. This way it saves
the cost of explicit randomization. In order to optimize code
execution even further, nodes are divided into active nodes
and inactive nodes. Since labels of inactive nodes cannot be
updated in the current iteration, the label propagation process
is only performed on active nodes, thus reducing the amount
of computation.

The termination criterion used by PLP is also different
from the original description [15]. PLP uses a threshold value
to stop processing. The value of the threshold is determined
empirically and set to n- 107>, where n is the number of nodes
in the graph. Therefore, for the majority of graphs which
were included in the experiment, the number of iterations is
relatively small (from 2 to about a hundred). Moreover, no
justification is provided for this formula which establishes a
relation between the number of iterations and the number
of nodes in the graph. Although it is claimed that “clustering
quality is not significantly degraded by simply omitting these
iterations,” it is also admitted that “while the PLP algorithm
is extremely fast, its quality might not always be satisfactory
for some applications” No results are presented to show how
the number of iterations affects the quality of community
detection or how the modularity scores of PLP compare to
those of the competition.

A locally greedy, agglomerative (bottom-up) multi-
level community detection method called parallel Louvain
method (PLM) is based on modularity optimization. Starting
from some initial partition, nodes are moved from one
community to another as long as it increases the objective
function, that is, modularity. When modularity reaches a
local optimum, a graph is coarsened and modularity opti-
mization process is repeated.

Ensemble preprocessing (EPP) algorithm is a combi-
nation of several community detection methods. Its main
goal is to form a classifier which decides if a pair of nodes
should belong to the same community. EPP requires a
preprocessing step which is performed by several parallel
PLP instances running concurrently. The consensus of several
base classifiers is used to form core communities which are
coarsened to reduce the problem size.

Ensemble multilevel (EML) method is a recursive exten-
sion of the ensemble preprocessing algorithm. First, the core
clustering is produced. Then the graph is contracted to a
smaller graph, and the same algorithm is called recursively
until a predefined termination condition is met.

All algorithms in [18] are created in C++. Parallel code
is implemented using OpenMP API. Nodes are distributed
between the threads and processed concurrently. Perfor-
mance of the algorithms is compared to several other com-
munity detection methods: CLU_TBB, RG, CGGC, CGGCi,
and the original sequential Louvain implementation. In order
to compare the quality of results produced by different
algorithms, Staudt and Meyerhenke use modularity [19].
Although modularity is very popular it was shown to suffer
from the resolution limit and is also known to have other
issues and limitations. There are other community quality
metrics as well as modified versions of the original definition
of modularity which overcome some of these problems [20].
However, modularity is the only measure used to compare
the quality of communities produced by different algorithms
in this experiment.

A shared-memory multiprocessor machine was used to
test the performance and community quality of different
algorithms. EML performed poorly while PLP and PLM were
found to pay off with respect to either the execution time or
community detection quality.

PLP was the fastest algorithm tested. It demonstrated
linear strong scaling in the range 2-16 threads for uk-2002,
the largest network which participated in all experiments. No
data on scaling results for other datasets were provided. Since
only one graph describes speedup for PLP, it is difficult to
measure the values exactly, but they are approximately 0.92
for 2 threads (i.e., slower than with a single thread), 1.45
for 4 threads, 2.6 for 8 threads, and 4.6 for 16 threads. The
running time drops in a slightly sublinear manner with the
number of threads, although the absolute values of speedup
are quite modest, and efficiency slowly goes down from 35%
for 4 threads to 29% for 16 threads.

In almost all the cases, EPP was able to improve the values
of modularity achieved by PLM. However, this advantage
comes at the cost of running on average 10 times slower. At the
same time, scalability of EPP remains unclear since no data
is provided on the running time performance for different
ensemble sizes.

For uk-2007-05 which was the largest graph used in
the experiments, only the processing time of 120 seconds
using the PLP algorithm and a parallel configuration with
32 threads is reported. No information is provided about
scalability tests with this graph for other numbers of threads.
In addition, due to memory constraints a different hardware
platform with larger memory and a different CPU had to be

used to process this network. Therefore, the results are not
directly comparable to those of other datasets. Although it
is also mentioned that “a modularity of 0.99598 is reached
for the uk-2007-05 graph in 660 seconds,” it is not clear
under which conditions this result was achieved. There is
no mention of any other results concerning uk-2007-05,
including any comparisons with other algorithms. Despite
mentjoning that uk-2007-05 requires “more than 250 GB of
memory in the course of an EPP run,” no EPP results for this
graph are reported either.

In [21] we designed a multithreaded parallel community
detection algorithm based on the sequential version of SLPA.
Although only unweighted and undirected networks have
been used to study the performance of our parallel SLPA
implementation, an extension for the case of weighted and
directed edges is straightforward and does not affect the
computational complexity of the method. To facilitate such
generalization, each undirected edge is represented with two
directed edges connecting two nodes in opposite directions.
In effect, the number of edges that are represented internally
in code, is doubled, but the code is capable of running
on directed graphs. A distinctive feature of our parallel
solution is that, unlike other approaches described above, it
is capable of performing overlapping community detection
and has a parameter enabling balancing the running time and
community detection quality.

In this paper, we further explore the multithreaded
parallel programming paradigm that was used in [21] and test
its performance on several real-world networks that range in
size from several hundred thousand nodes and a few million
edges to almost 5.5 million nodes and close to 170 million
edges. We also provide a detailed analysis of the quality of
communities detected with the parallel algorithm.

3. Parallel Linear Time Community Detection

The SLPA [17] is a sequential linear time algorithm for
detecting overlapping communities. SLPA iterates over the
list of nodes in the network. Each node i randomly picks one
of its neighbors n; and the neighbor then selects randomly
a label [from its list of labels and sends it to the requesting
node. Node i then updates its local list of labels with I.
This process is repeated for all the nodes in the network.
Once it is completed, the list of nodes is shuffled and the
same processing repeats again for all nodes. After t iterations
of shuffling and processing label propagation, every node
in the network has a label list of length t, as every node
receives one label in each iteration. After all iterations are
completed, postprocessing is carried out on the list of labels
and communities are extracted. We refer interested readers to
the full paper [17] for more details on SLPA.

It is obvious that the sequence of iterations executed in
SLPA algorithm makes the algorithm sequential and it is
important for the list of labels updated in one iteration to be
reflected in the subsequent iterations. Therefore, the nodes
cannot be processed completely independently of each other.
Each node is a neighbor of some other nodes; therefore,
if the lists of labels of its neighbors are updated, it will

Scientific Programming

receive a label randomly picked from the updated list of
labels.

3.1. Multithreaded SLPA with Busy-Waiting and Implicit
Synchronization. Our multithreaded implementation closely
follows the algorithm described in [21] with minor improve-
ments and bug fixes. In the multithreaded SLPA, we adopt
a busy-waiting synchronization approach. Each thread per-
forms label propagation on a subset of nodes assigned to
this particular thread. This requires that the original network
to be partitioned into subnetworks with one subnetwork to
be assigned to each thread. Although partitioning can be
done in several different ways depending on our objective,
in this case the best partitioning will be that which makes
every thread spend the same amount of time processing each
node. Label propagation for any node consists of forming
a list of labels by selecting a label from every neighbor of
this node and then selecting a single label from this list
to become a new label for this node. In other words, the
ideal partitioning would guarantee that at every step of
the label propagation phase each thread deals with a node
that has exactly the same number of neighbors as nodes
that are being processed by other threads. Thus, the ideal
partitioning would divide the network in such a way that a
sequence of nodes for every thread consists of nodes with
the same number of neighbors across all the threads. Such
partitioning is illustrated in Figurel. T3,T5,...,T, are p
threads that execute SLPA concurrently. As indicated by the
arrows, time flows from top to bottom. Each thread has its
subset of nodes 1;;, 1,5, ..., 1y, of size k where i is the thread
number, and node neighbors are m;,m,,...,m;. A box
corresponds to one iteration. There are ¢ iterations in total.
Dashed lines denote points of synchronization between the
threads.

In practice, this ideal partitioning will lose its perfection
due to variations in thread start-up times as well as due
to uncertainty associated with thread scheduling. In other
words, in order for this ideal scheme to work perfectly,
hard synchronization of threads after processing every node
is necessary. Such synchronization would be both detri-
mental to the performance and unnecessary in real-life
applications.

Instead of trying to achieve an ideal partitioning we can
employ a much simpler approach by giving all the threads
the same number of neighbors that are examined in one
iteration of the label propagation phase. It requires providing
each thread with such a subset of nodes that the sum of
all indegrees is equal to the sum of all indegrees of nodes
assigned to every other thread. In this case, for every iteration
of the label propagation phase every thread will examine
the same overall number of neighbors for all nodes that are
assigned to this particular thread. Therefore, every thread
will be performing, roughly, the same amount of work per
iteration. Moreover, synchronization then is only necessary
after each iteration to make sure that no thread is ahead of any
other thread by more than one iteration. Figure 2 illustrates
such partitioning. As before, T}, T, ..., T, are p threads that
execute SLPA concurrently. As shown by the arrows, time

Scientific Programming

t iterations
A

t iterations
A

Node Number of
index neighbors

(]]
(] ma
(g e

Ty

Node Number of]|
index neighbors
(1]

my

Node Number of]
index neighbors

(ol ___mMi___
(] |
(k] My

Node Number of|
index neighbors

] m
[l oy
[r] s

Node Number of]
index neighbors

(101

Node Number of|
index neighbors

T

Node Number of|
index neighbors

lrp) _my
] my
[”pk] My

Node Number of]
index neighbors

gl omy
g ma
gl me

Node Number of]
index neighbors

[rp] __m
(o] 2
()

FIGURE I: Ideal partitioning of the network for multithreaded SLPA.

Ty
Node index Node index
=~ =~
[ha] | 5 = [mu] | =
g 8
[12] \ § E [112] \ g é
=] =
R R
o] | & (] J &
Node index 177" 7 |Node index
=~ =~
n, = n)
[01] ; % [11] g %
=) =)
[102] LE & (1] LE &
g = g2
© °
[noko] . [”1k1] .
- d____ -
Node index Node index
[101] S n b
S E [11] S E
g S
[102] g & (2] E £
Z 2 g2
—_ g — <
s s
[”oko] B = ["1k1] 8 =

T

Node index
[l |
n
2 g ﬁ
=
[nPZ] > g §
z
i
° [
= =
[”pkp]_/
Node index
1])
n S
pl g ﬁ
Ha)
[”pz] >§ g
o 0
g =
R
°
["pkp]_/ s
Node index
[np] |5
P g ?
Na)
[”pz] £ g
El-
£ =
)
]
[”pkp] B E

FIGURE 2: A better practical partitioning of the network for multithreaded SLPA.

flows from top to bottom. However, each thread now has its
subset of nodes 1;;, 1,5, ..., my. of size k; where i is the thread
number. In other words, threads are allowed to have different
number of nodes that each of them processes, as long as the

total number of node neighbors M = Zfil m; is the same
across all the threads. A box still corresponds to one iteration.
There are ¢ iterations in total. Dashed lines denote points of
synchronization between the threads.

We can employ yet an even simpler approach of just
splitting nodes equally between the threads in such a way
that every thread gets the same (or nearly the same) number
of nodes. It is important to understand that this approach is
based on the premise that the network has small variation
of local average of node degrees across all possible subsets
of nodes of equal size. If this condition is met, then, as
in the previous case, every thread performs approximately
the same amount of work per iteration. Our experiments
show that for many real-world networks this condition holds,
and we accepted this simple partitioning scheme for our
multithreaded SLPA implementation.

Given the choice of the partitioning methods described
above, each of the threads running concurrently is processing
all the nodes in its subset of nodes at every iteration of the
algorithm. Before each iteration, the whole subset of nodes
processed by a particular thread needs to be shuffled in order
to make sure that the label propagation process is not biased
by any particular order of processing nodes. Additionally, to
guarantee the correctness of the algorithm, it is necessary to
ensure that no thread is more than one iteration ahead of any
other thread. The latter condition places certain restrictions
on the way threads are synchronized. More specifically, if
a particular thread is running faster than the others (for
whatever reasons), it has to eventually pause to allow other
threads to catch up (i.e., to arrive at a synchronization
point no later than one iteration behind this thread). This
synchronization constraint limits the degree of concurrency
of this multithreaded solution.

It is important to understand the importance of partition-
ing the network nodes into subsets to be processed by the
threads in respect to the distribution of edges across different
network segments. In our implementation we use a very
simple method of forming subsets of nodes for individual
threads. First, a subset for the first thread is formed. Nodes are
read sequentially from an input file. As soon as a new node
is encountered, it is added to the subset of nodes processed
by the first thread. After the subset of nodes for the first
thread has been filled, a subset of nodes for the second
thread is formed, and so on. Although simple and natural,
this approach works well on networks with high locality of
edges. For such networks, if the input file is sorted in the
order of node numbers, nodes are more likely to have edges to
other nodes that are assigned to the same thread. This leads
to partitioning where only a small fraction (few percent) of
nodes processed by each thread have neighbors processed by
other threads.

Algorithm 1 shows the label propagation phase of our
multithreaded SLPA algorithm which is executed by each
thread. First, each thread receives a subset of nodes that it

Scientific Programming

ThreadPartition «— CreatePartition(InputFile)
p « number of threads
for j=1toj< pdo
Used[j] < 0
end for
for all v such that v is in ThreadNodesPartition do
for all w such that w has an edge to v
k « getProcessorForNode(w)
Used[k] < 1
end for
end for
Dsize — 0
for j=1toj< pdo
if Used[j] > 0 then
D(Dsize] < j
Dsize < Dsize + 1
end if
end for
while ¢ < maxT do
for j=0to j < Dsize— 1 do
while ¢ —t of thread D[j] > 1 do
Do nothing
end while
end for
for all v such that v is in myPartition do
| « selectLabel(v)
Add label | to labels of v
end for
te—t+1
end while

ALGORITHM 1: Multithreaded SLPA.

processes called ThreadNodesPartition. An array of depen-
dencies Used is first initialized and then filled in such
a way that it contains 1 for all threads that process at
least one neighbor of the node from Thread NodesPartition
and 0 otherwise. This array of dependencies Used is then
transformed to a more compact representation in the form
of a dependency array D. Elements of array D contain thread
numbers of all the threads which process any neighbor of a
node that this thread processes. Dsize is the size of array D.
If no node that belongs to the subset processed by this thread
has neighbors processed by other threads, then array D is
empty and Dsize = 0. If, for example, nodes that belong to
the subset processed by this thread have neighbors processed
by threads 1, 4, and 7, then array D has three elements with
values of 1, 4, and 7, and Dsize = 3. After the dependency
array has been filled, the execution flow enters the main
label propagation loop which is controlled by counter ¢ and
has max T iterations. At the beginning of every iteration, we
ensure that this thread is not ahead of the threads on which
it depends by more than one iteration. If it turns out that it is
ahead, this thread has to wait for the other threads to catch up.
Then the thread performs a label propagation step for each
of the nodes it processes which results in a new label being
added to the list of labels for each of the nodes. Finally, the

Scientific Programming

iteration counter is incremented, and the next iteration of the
loop is considered.

In order to even further alleviate the synchronization
burden between the threads and minimize the sequentiality
of the threads as much as possible, another optimization tech-
nique can be used. We note that some nodes which belong
to a set processed by a particular thread have connection
only to nodes that are processed by the same thread (we
call them internal nodes), while other nodes have external
dependencies. We say that a node has an external dependency
when at least one of its neighbors belongs to a subset of
nodes processed by some other thread. Since there are nodes
with external dependencies, synchronization rules described
above must be strictly followed in order to ensure correctness
of the algorithm and meaningfulness of the communities it
outputs. However, nodes with no external dependencies can
be processed within a certain iteration independently from
the nodes with external dependencies. It should be noted
that a node with no external dependencies is not completely
independent from the rest of the network since it may well
have neighbors of neighbors that are processed by other
threads.

It follows that processing of nodes with no external
dependencies has to be done within the same iteration
framework as for nodes with external dependencies but with
less restrictive relations in respect to the nodes processed
by other threads. In order to utilize the full potential of the
technique described above, it is necessary to split the subset
of nodes processed by a thread into two subsets, one of which
contains only nodes with no external dependencies and the
other one contains all the remaining nodes. Then, during
the label propagation phase of the SLPA, nodes that have
external dependencies are processed first in each iteration.
Since we know that by the time such nodes are processed
the remaining nodes (those with no external dependencies)
cannot influence the labels propagated to nodes processed
by other threads (due to the symmetry of the network), it is
safe to increment the iteration counter for this thread, thus
allowing other threads to continue their iterations if they have
been waiting for this thread in order to be able to continue.
Meanwhile, this thread can finish processing nodes with no
external dependencies and complete the current iteration.

This approach effectively allows a thread to report com-
pletion of the iteration to the other threads sooner than it has
been completed by relying on the fact that the work which
remains to be completed cannot influence nodes processed by
other threads. This approach, though seemingly simple and
intuitive, leads to noticeable improvement of the efficiency of
parallel execution (as described in Section 3.2) mainly due to
decreasing the sequentiality of execution of multiple threads
by signaling other threads earlier than in the absence of such
splitting.

An important peculiarity arises when the number of
nodes with external dependencies is only a small fraction (few
percent) of all the nodes processed by the thread. In this case
it would be beneficial to add some nodes without external
dependencies to the nodes with external dependencies and
process them together before incrementing the iteration
counter. The motivation here is that nodes must be shuffled

Internal — Createlnternal Partition(InputFile)
External — CreateExternalPartition(InputFile)
p « number of threads
/*Unchanged code from Algorithm 1 omitted™/
while ¢t < maxT do
for j=0to j < Dsize -1 do
while t —t of thread D[j] > 1 do
Do nothing
end while
end for
for all v such that v is in External do
| « selectLabel(v)
Add label | to labels of v
end for
t—t+1
for all v such that v is in Internal do
| « selectLabel(v)
Add label 1 to labels of v
end for
end while

ALGORITHM 2: Multithreaded SLPA with splitting of nodes.

in each partition separately from each other to preserve the
order of execution between partitions. Increasing partition
size above the number of external nodes improves shuffling
in the smaller of the two partitions.

The remaining nodes without external dependencies
can be processed after incrementing the iteration counter,
as before. In order to reflect this optimization factor we
introduce an additional parameter called the splitting ratio.
A value of this parameter indicates the percentage of nodes
processed by the thread before incrementing the iteration
counter. For instance, if we say that splitting of 0.2 is used it
means that at least 20% of nodes are processed before incre-
menting the iteration counter. If after initial splitting of nodes
into two subsets of nodes with external dependencies and
without external dependencies it turns out that there are too
few nodes with external dependencies to satisfy the splitting
ratio, some nodes that have no external dependencies are
added to the group of nodes with external dependencies just
to bring the splitting ratio to the desired value.

Algorithm 2 shows our multithreaded SLPA algorithm
that implements splitting of nodes processed by a thread into
a subset of nodes with external dependencies and a subset
with no external dependencies. The major difference from
Algorithm 1 is that, instead of processing all the nodes before
incrementing the iteration counter, we first process a subset of
nodes that includes nodes that have neighbors processed by
other threads, then we increment the iteration counter, and
then we process the rest of the nodes.

Since in [21] we studied the impact of selecting different
values of the splitting ratio, it was not our main focus here.
We simply accepted a splitting ratio of 0.2 and kept it fixed
for all the test runs. Our major objective was to ensure
that all parallel and sequential runs are performed with
exactly the same code base and provide identical runtime

10

conditions and parameters, so that results of our performance
evaluation and community detection quality metrics are
directly comparable.

3.2. Performance Evaluation of the Multithreaded Solution.
We performed runs on a hyper-threaded Linux system
operating on top of a Silicon Mechanics Rackform nServ
A422.v3 machine. Processing power was provided by 64 cores
organized as four AMD Opteron 6272 central processing
units (2.1 GHz, 16-core, G34, 16 MB L3 Cache) operating over
a shared 512 GB bank of random access memory (RAM) (32
% 16 GB DDR3-1600 ECC Registered 2R DIMM:s) running at
1600 MT/s Max. The source code was written in C++03 and
compiled using g++ 4.6.3 (Ubuntu/Linaro 4.6.3-lubuntus5).

Four datasets have been used to test the perfor-
mance of the multithreaded solution and the quality of
community detection. Three of these datasets (com-Amazon,
com-DBLP, and com-LiveJournal) have been acquired from
Stanford Large Network Dataset Collection (http://snap.stan-
ford.edu/data/) which contains a selection of publicly avail-
able real-world networks (SNAP networks).

Undirected Amazon product copurchasing network
(referred to as com-Amazon) was gathered, described, and
analyzed in [22]. From the dataset information [23], it
follows that it was collected by crawling Amazon website.
A Customers Who Bought This Item Also Bought feature of
the Amazon website was used to build the network. If it is
known that some product i is frequently bought together with
product j, then the network contains an undirected edge from
i to j. For each product category defined by Amazon, there is
a corresponding ground truth community. Each connected
component in a product category is treated as a separate
ground truth community.

Since small ground truth communities having less than
3 nodes had been removed, it was necessary to modify the
original com-Amazon network to ensure that only nodes
that belong to ground truth communities can appear in
communities detected by the multithreaded parallel algo-
rithm. Otherwise, comparison of communities produced by
the community detection algorithm and the ground truth
communities would not be feasible. The modified com-
Amazon network was obtained from the original one by
removing nodes which are not found in any ground truth
community and all the edges connected to those nodes. While
the original Amazon network consists of 334,863 nodes and
925,872 undirected edges, the modified dataset has 319,948
nodes and 1,760,430 directed edges. As outlined in Section 2,
each undirected edge is internally converted to a pair of
edges. Therefore, 925,872 undirected edges from the original
network correspond to 1,851,744 directed edges in the internal
representation of the code, and since some of the edges were
incident to removed nodes, the resulting number of directed
edges left in the network was 1,760,430.

The DBLP computer science bibliography network
(referred to as com-DBLP) was also introduced and studied
in [22]. According to the dataset information [24], it provides
a comprehensive list of research papers in computer science.
If two authors publish at least one paper together, then the

Scientific Programming

nodes corresponding to these authors will be connected
with an edge in a coauthorship network. Ground truth
communities are based on authors who published in journals
or conferences. All authors who have at least one publication
in a particular journal or conference form a community.
Similarly to the com-Amazon network, each connected
component in a group is treated as a separate ground truth
community. Small ground truth communities (less than 3
nodes) have also been removed.

The DBLP dataset was also modified to facilitate compar-
ison with ground truth communities as described above for
the com-Amazon network. Since DBLP is also undirected,
the same considerations about the number of edges that
were provided above for the com-Amazon network also apply
to com-DBLP. The original DBLP network contains 317,080
nodes and 1,049,866 undirected edges, while the modified
version has 260,998 nodes and 1,900,118 directed edges.

Another network from [22] that we are using to evaluate
the performance of the multithreaded parallel implementa-
tion of SLPA and the quality of communities it produces
is a LiveJournal dataset (referred to as com-LiveJournal).
The dataset information page [25] describes LiveJournal
as a free online blogging community where users declare
friendship with each other. LiveJournal users can form groups
and allow other members to join them. For the purposes
of evaluating the quality of communities we are treating
the com-LiveJournal network as having no ground truth
communities. The LiveJournal network is undirected and
contains 3,997,962 nodes and 34,681,189 pairs of directed
edges. Since we are not comparing the communities found
by the community detection algorithm with the ground truth
communities, no modification of the original network is
necessary.

The fourth dataset is a snapshot of the Foursquare
network as of October 11, 2013. This dataset contains 5,499,157
nodes and 169,687,676 edges. No information about ground
truth communities is available.

We calculated speedup using the formula shown in (1) and
efficiency according to (2):

T
Speedup = 771, 1)
P

where Speedup is the actual speedup calculated according to
(1) and p is the number of processors or computing cores:

Speedup

Efficiency = (2)

All the experiments were run with 1,000 iterations (the
value of maxT was set to 1000) for all networks. On one
hand, a value of 1,000 for the number of iterations provides
a sufficient amount of work for the parallel portion of the
algorithm, so that the overhead associated with creating
and launching multiple threads does not dominate the
label propagation running time. On the other hand, 1,000
iterations are empirically enough to produce meaningful
communities since the number of labels in the history of
every label is statistically significant. At the same time,

Scientific Programming

although running the algorithm for 1,000 iterations on certain
datasets (especially larger ones) was in some cases (mainly for
smaller core counts) taking a few days, it was still feasible to
complete all runs on all four networks in under two weeks.

We conducted one set of measurements by considering
only time for the label propagation phase since it is at this
stage that our multithreaded implementation differs from the
original sequential version. Time necessary to read an input
file and construct in-memory representation of the nodes and
edges as well as any auxiliary data structures was not included
in this timing. All postprocessing steps and writing output
files have also been excluded.

However, for an end user it is not the label propagation
time (or any other single phase of the algorithm) that is
important but rather the total running time. Users care about
the time it took for the code to run: from the moment a
command was issued until the resulting communities files
have been written to a disk. Therefore, we conducted a second
set of measurements to gather data on total execution time
of our multithreaded parallel SLPA implementation. Since
the total execution time includes not only a highly parallel
label propagation stage but also file I/O, threads creation
and cleanup, and other operations which are inherently
sequential, it is to be expected that the values of both speedup
and efficiency are going to be worse than in the case when
only label propagation phase is considered.

Since the hardware platform we used provides 64 cores,
every thread in our tests executes on its dedicated core.
Therefore, threads do not compete for central processing unit
(CPU) cores (unless there is interference from the operating
system or other user processes running concurrently). They
are executed in parallel, and we can completely ignore thread
scheduling issues in our considerations. Because of this,
we use terms “thread” and “core” interchangeably when we
describe results of running the multithreaded SLPA. The
number of cores in our runs varies from 1 to 64. However,
we observed a performance degradation when the number
of threads is greater than 32. This performance penalty is
most likely caused by the memory banks organization of our
machine. Speedup and efficiency are calculated using (1) and
(2) defined earlier. No third-party libraries or frameworks
have been used to set up and manage threads. Our implemen-
tation relies on Pthreads application programming interface
(POSIX threads) which has implementations across a wide
range of platforms and operating systems.

We noticed that the compiler version and compilation
flags can each play a crucial role not only in terms of how
efficiently the code runs but also in terms of the sole ability of
code to execute in the multithreaded mode. Unfortunately,
little, if anything is clearly and unambiguously stated in
compiler documentation regarding implications of using
various compiler flags to generate code for execution on
multithreaded architectures. For the most part, developers
have to rely on their own experience or common sense and
experiment with different flags to determine the proper set
of options which would make the compiler generate effective
code capable of flawlessly executing multiple threads.

For instance, when the compiler runs with either -O2
or -O3 optimization flag to compile the multithreaded SLPA

1

3000
2500
2000
1500
1000

500

Time (s)

1 2 4 8 16 24 32 40 48 64
Number of threads (cores) utilized

FIGURE 3: Label propagation time for com-Amazon network at
different number of cores.

8 1.2
7 1
6 1 os
8
s 5 [o8 g
2 4 o6 2
4 £
&3 104 &3
2 .
) o2
0 0
1 2 4 8 16 24 32 40 48 64
Number of threads (cores) utilized
—— Speedup

—=— Efficiency

FIGURE 4: Speedup and efficiency for com-Amazon network (con-
sidering only label propagation time) at different number of cores.

the resulting binary code simply deadlocks at execution. The
reason for deadlock is exactly the optimization that compiler
performs ignoring the fact that the code is multithreaded.
This optimization leads to threads being unable to see updates
to the shared data structures performed by other threads. In
our case such shared data structure is an array of iteration
counters for all the threads. Evidently, not being able to see
the updated values of other threads” counters quickly leads
threads to a deadlock.

Another word of caution should be offered regarding
some of the debugging and profiling compiler flags. More
specifically, compiling code with -pg flag which generates
extra code for a profiling tool gprof leads to substantial
overhead when the code is executed in a multithreaded
manner. The code seems to be executing fine but with a
speedup of less than 1. In other words, the more threads are
being used the longer it takes for the code to run regardless
of the fact that each thread is executed on its own core and
therefore does not compete with other threads for CPU. It is
also counterintuitive since using more threads should result
in a smaller subset of nodes that each thread processes.

The results of performance runs of our multithreaded
parallel implementation are presented in Figures 3-19. (Data
export was performed using Daniel’s XL Toolbox add-in for
Excel, version 6.51, developed by Daniel Kraus, Wiirzburg,
Germany.)

Figures 3, 5, 7, and 9 show the time it took to complete
the label propagation phase of the multithreaded parallel

12

3000
2500
2000
1500
1000

500

Time (s)

1 2 4 8 16 24 32 40 48 o4

Number of threads (cores) utilized

FIGURE 5: Label propagation time for com-DBLP network at
different number of cores.

1.2

0.8
0.6
0.4
0.2

Speedup
Efficiency

S = N W R Ul NN

1 2 4 8 16 24 32 40 48 64

Number of threads (cores) utilized

—— Speedup
—=— Efficiency

FIGURE 6: Speedup and efficiency for com-DBLP network (consid-
ering only label propagation time) at different number of cores.

Time (s)
O =N Wk U1\ 0 \O

1 2 4 8 16 24 32 40 48 64

Number of threads (cores) utilized

FIGURE 7: Label propagation time for com-LiveJournal network at
different number of cores.

7 1.2

6 1

> 08 &
El g
3 0.6 -3
g 3 =!
) 04 =

1 0.2

0 0

1 2 4 8 16 24 32 40 48 64
Number of threads (cores) utilized

—— Speedup
—=— Efficiency

FIGURE 8: Speedup and efficiency for com-LiveJournal network
(considering only label propagation time) at different number of
cores.

Scientific Programming

x10*
25

20

15

Time (s)

10

1 2 4 8 16 24 32 40 48 o4

Number of threads (cores) utilized

FIGURE 9: Label propagation time for Foursquare network at
different number of cores.

8 1.2

7 1

6
& 5 08 &
2~ Q
g 4 0.6 -5
9 E
% ; 04 =

1 0.2

0 0

1 2 4 8 16 24 32 40 48 64

Number of threads (cores) utilized

—— Speedup
—=— Efficiency

FIGURE 10: Speedup and efficiency for Foursquare network (consid-
ering only label propagation time) at different number of cores.

Speedup
O~ N WA Ul ®

1 2 4 8 16 24 32 40 48 64
Number of threads (cores) utilized

—— com-Amazon —4— com-LiveJournal
—=— com-DBLP —»— Foursquare

FIGURE 11: Speedup for all datasets (considering only label propaga-
tion time) at different number of cores.

3500
3000
2500
2000
1500
1000
500
0

Time (s)

1 2 4 8 16 24 32 40 48 o4

Number of threads (cores) utilized

FIGURE 12: Total execution time for com-Amazon network at
different number of cores.

Scientific Programming

6 12
5 1
5 4 108 5
3 g
g 3 toe 8
&) Los §
1 102
0 0

1 2 4 8 16 24 32 40 48 64

Number of threads (cores) utilized

—— Speedup
—s=— Efficiency

FIGURE 13: Speedup and efficiency for com-Amazon network (con-
sidering total execution time) at different number of cores.

3500
3000
2500
2000
1500
1000

500

Time (s)

1 2 4 8 16 24 32 40 48 64

Number of threads (cores) utilized

FIGURE 14: Total execution time for com-DBLP network at different
number of cores.

SLPA on four datasets (com-Amazon, com-DBLP, com-
LiveJournal, and Foursquare, resp.) for the number of cores
varying from 1 to 64. It can be seen that for smaller core
counts the time decreases nearly linearly with the number
of threads. For larger number of cores the label propagation
time continues to improve but at a much slower rate. In
fact, for 32 or more cores, there is almost no improvement
of the label propagation time on smaller datasets (com-
Amazon and com-DBLP). At the same time, larger datasets
(com-LiveJournal and Foursquare) improve label propaga-
tion times all the way through 64 cores. As outlined in
Section 1, this is clearly something to be expected since in a
strong scaling setting enough workload should be supplied to
parallel processes to compensate for the overhead of creating
multiple threads and maintaining communication between
them.

This trend is even more evident in Figures 4, 6, 8, and
10 which plot the values of speedup and efficiency for the
four datasets (com-Amazon, com-DBLP, com-LiveJournal,
and Foursquare, resp.) and the number of cores from 1 to
64. As the number of cores increases, the speedup also grows
but not as fast as the number of utilized cores, so efficiency
drops. The saturation of speedup is quite evident for smaller
networks (com-Amazon and com-DBLP) and corresponds
to regions with no improvement of the label propagation
time that we noticed earlier. Similarly, the values of speedup
continue to improve (although at decreasing rates) for larger

13

5 1.2
4.5
4 1
3.5 E
o 33 08
5 =
T 25 0.6 .2
o] 2 &EU
& s 04 &
1 102
0.5
0 0
1 2 4 8 16 24 32 40 48 64
Number of threads (cores) utilized
—— Speedup

—=— Efficiency

FIGURE 15: Speedup and efficiency for com-DBLP network (consid-
ering total execution time) at different number of cores.

x10*
12

10

8

Time (s)
o

1 2 4 8 16 24 32 40 48 64
Number of threads (cores) utilized

FIGURE 16: Total execution time for com-LiveJournal network at
different number of cores.

6 1.2
5 1
g 4 08 &
< g
g 3 0.6 -5
=3 -5
L2 04 =
1 0.2
0 0

1 2 4 8 16 24 32 40 48 64

Number of threads (cores) utilized

—— Speedup
—=— Efficiency

FIGURE 17: Speedup and efficiency for com-LiveJournal network
(considering total execution time) at different number of cores.

datasets (com-LiveJournal and Foursquare) even at 64 cores.
Nonetheless, the efficiency degrades since speedup gains are
small relative to an increase in core count. Such behavior can
be attributed to several factors. First of all, as the number
of cores grows while the network (and hence the number of
nodes and edges) stays the same, each thread gets fewer nodes
and edges to process. Approaching the limit of the thread size
can cause the overhead of creating and running threads to
outweigh the benefits of parallel execution for a sufficiently
small thread size. Furthermore, as the number of cores grows,
the number of neighbors of nodes with external dependencies

14

x10*
25

20

15

10

Time (s)

1 2 4 8 16 24 32 40 48 64
Number of threads (cores) utilized

FIGURE 18: Total execution time for Foursquare network at different
number of cores.

1.2

1os
106
104
toz2

Speedup
Efficiency

O = N W kUl NN

1 2 4 8 16 24 32 40 48 64
Number of threads (cores) utilized

—— Speedup
—=— Efficiency

FIGURE 19: Speedup and efficiency for Foursquare network (consid-
ering total execution time) at different number of cores.

increases (both because each thread gets fewer nodes and
there are more threads to execute them). More nodes with
external dependencies, in turn, means that threads are more
dependent on other threads.

However, for the sake of fair data interpretation, we need
to remember that the definition of efficiency which we are
using here is based on (2). It only takes into account the
parallel execution speedup observed on a certain number of
cores. The cost of cores is completely ignored in this formula.
More realistically, the cost should be considered as well. The
price paid for a modern computer system is not linear with
the number of processors and cores. Within a certain range
of the number of cores per system as the architecture moves
towards higher processor and core counts, each additional
core costs less. That is why the pure parallel efficiency defined
by (2) should be effectively multiplied by the cost factor for
making decisions regarding the choice of hardware to run
community detection algorithms on real-life networks. After
such multiplication, the efficiency including cost is going
to be much more favorable to higher core counts than the
efficiency given by (2).

Figure 11 combines plots of speedup values based on the
label propagation time for all four datasets. Overall, the values
of speedup do not vary considerably between the networks
used in the experiments. However, it is quite evident that
the shape of the curves is slightly different. On one hand,

Scientific Programming

there is com-Amazon and com-DBLP for which the values
of speedup reach local maximum at fewer than maximal
number of cores. On the other hand, speedup values for
com-LiveJournal and Foursquare are strictly increasing as the
number of cores ranges between 1 and 64.

This observation is just additional evidence of the behav-
ior discussed earlier. Smaller networks are too small to
effectively use large core counts which leads to the saturation
of speedup. The performance of multithreaded parallel SLPA
on larger datasets continues to improve at almost a constant
rate in a wide range of core counts between 4 and 64. It is
also worth noting that, as long as a network is large enough
to justify the overhead of multithreaded execution, different
datasets yield almost identical speedup values. Although
more testing would be required to firmly assert that speedup
is independent of the size of the dataset, such behavior
would be easy to explain. Indeed, speedup performance of the
algorithm depends primarily on the properties of the graph
(e.g., the number of edges crossing the boundary between
the node sets processed by different cores) rather than on
the size of the network. Such a feature is quite desirable
in community detection since it enables the application to
provide a user with an estimate of the overall execution time
once the network is loaded and partitioned between the cores.

Figures 12, 14, 16, and 18 present the total community
detection time of the multithreaded parallel SLPA on four
datasets (com-Amazon, com-DBLP, com-LiveJournal, and
Foursquare, resp.) for the number of cores varying from 1 to
64. Although clearly the total running time exceeds the label
propagation phase, the difference in many cases is not that
significant. This is especially true for larger datasets (com-
LiveJournal and Foursquare) which, as we discussed above, is
something to be expected. The fact that the label propagation
phase is a dominating component of the total running time
justifies our efforts to increase performance by replacing
sequential label propagation with a parallel implementation.

The values of speedup and efficiency calculated based
on the total execution time rather than label propagation
time are plotted in Figures 13, 15, 17, and 19 for the four
datasets (com-Amazon, com-DBLP, com-LiveJournal, and
Foursquare, resp.) and the number of cores between 1 and
64. Although these values are worse than those calculated
based only on the label propagation time, they provide
a more realistic view of the end-to-end performance of
our multithreaded SLPA implementation. In real life the
speedup values of around 5 to 6 still constitute a substantial
improvement over the sequential implementation, meaning,
for example, that you would only have to spend 8 hours
waiting for your community detection results instead of 2
days.

Figure 20 shows combined plots of speedup values for
all four datasets considering the total execution time. Just
like in Figure 11, the values of speedup for different networks
are quite similar. The same two types of curves are observed
which correspond to a group of relatively small (com-
Amazon and com-DBLP) and large (com-LiveJournal and
Foursquare) networks.

However, there are some differences. First, the absolute
values of speedup are lower when we consider the total

Scientific Programming

Speedup

15

TABLE 1: Metric values of the community structures detected by
sequential SLPA and multithreaded SLPA on Amazon (bold font
denotes the best value for each metric).

Algorithm VI NMI F-measure NVD
Sequential SLPA 65.2664 1.6113 1.5318 -0.5647
Multithreaded

65.4445 1.6132 1.5034 —0.5552
SLPA

S = N W kR N

1 2 4 8 16 24 32 40 48 64

Number of threads (cores) utilized

—— com-Amazon
—=— com-DBLP

com-LiveJournal
—»— Foursquare

FIGURE 20: Speedup for all datasets (considering total execution
time) at different number of cores.

execution time instead of just the label propagation phase.
This is clearly something to be expected since the total
execution time includes many operations (e.g., reading the
input graph and writing output communities, partitioning
the network between the cores, etc.) which cannot be made
efficiently parallel. Second, the difference in speedup for
different datasets even within the same group (e.g., large
datasets) is greater than it was in Figure 11. The reason for that
is also the effect of the limiting factor of sequential operations.
Since we are considering the total execution time here, the
size of the dataset affects speedup more significantly than in
the case when only label propagation time was taken into
account.

4. The Quality of Community Detection

In this section, we will evaluate the quality of the community
structure detected with multithreaded version of SLPA [17]
on the four datasets, Amazon, DBLP, Foursquare, and Live-
Journal, introduced in Section 3.2. Amazon and DBLP have
ground truth communities, while Foursquare and LiveJour-
nal do not. Our only concern here is whether the community
structure discovered by multithreaded SLPA has the quality
similar to that detected by sequential SLPA [17] since we
have already shown the effectiveness of sequential SLPA,
compared with other community detection algorithms, in
[17, 26]. Each metric value in Tables1and 2 is the average
of results from ten runs of the community detection algo-
rithm. The tested values of threshold r of SLPA are r =
0.01,0.05,0.1,0.15,0.2,0.25,0.3,0.35, 0.4, and 0.45.

We calculate variation of information (VI), normalized
mutual information (NMI), F-measure, and normalized Van
Dongen metric (NVD) [20] of the community structures
detected by sequential SLPA and multithreaded SLPA on
Amazon and DBLP, presented in Tables 1 and 2. Notice that
VI, NMI, F-measure, and NVD are intended to measure
the quality of disjoint communities. However, we could
still use them here to evaluate the quality of overlapping
communities, although the values of NMI, F-measure, and
NVD may not be in the range of [0, 1]. There are mainly two
reasons why we adopt their disjoint versions. On one hand,

TABLE 2: Metric values of the community structures detected by
sequential SLPA and multithreaded SLPA on DBLP (bold font
denotes the best value for each metric).

Algorithm VI NMI F-measure NVD
Sequential SLPA 30.4591 0.963 0.4112 0.4306
Multithreaded

30.8962 0.9675 0.4029 0.4521
SLPA

we are only concerned whether multithreaded SLPA has
almost the same performance with sequential SLPA, in other
words, whether communities detected by sequential and
parallel runs have values of VI, NMI, F-measure, and NVD
close to each other. On the other hand, VI, F-measure, and
NVD do not have definitions for overlapping communities
yet. NMI has its overlapping version [27], but it takes a
very long time to calculate its value on large networks, like
Amazon and DBLP. It can be seen from Tables 1 and 2 that
the metric values of the community structures detected by
sequential SLPA and multithreaded SLPA on Amazon and
DBLP are very close to each other, which indicates that
multithreaded SLPA has almost the same performance with
sequential SLPA on Amazon and DBLP.

We then compute modularity (Q) [19], intradensity,
contraction, expansion, and conductance [22, 28] of the
community structures found by sequential SLPA and multi-
threaded SLPA on Foursquare and LiveJournal, presented in
Tables 3 and 4. Notice that the modularity we adopt here is
also applicable to disjoint communities, so its value may not
be in the range of [0, 1]. The reasons for using the disjoint
version of modularity echo those given in the case of VI,
NMI, F-measure, and NVD metrics. In addition, there are
several overlapping versions for modularity [29-34], and it
is not clear which one is the best. Tables 3 and 4 show that
the metric values of the community structures detected by
sequential SLPA and multithreaded SLPA on Foursquare and
LiveJournal are also very close to each other, which implies
that multithreaded SLPA has almost the same performance
with sequential SLPA on Foursquare and LiveJournal.

Comparisons between different community detection
algorithms are not always easy to make due to substantially
different implementations which might even require mutu-
ally exclusive architectural features or software components
(shared-memory versus distributed memory machines, pro-
gramming languages compiled to native code versus devel-
opment systems based on virtual machines or interpretation,
and so on).

16

Scientific Programming

TABLE 3: Metric values of the community structures detected by sequential SLPA and multithreaded SLPA on Foursquare (bold font denotes

the best value for each metric).

Algorithm Q Intradensity Contraction Expansion Conductance
Sequential SLPA 0.7608 0.3651 3.6683 2.5137 0.3849
Multithreaded SLPA 0.7682 0.3535 3.5766 2.6358 0.4055

TABLE 4: Metric values of the community structures detected by sequential SLPA and multithreaded SLPA on LiveJournal (bold font denotes

the best value for each metric).

Algorithm Q Intradensity Contraction Expansion Conductance
Sequential SLPA 0.6834 0.3174 4.4735 2.4332 0.3777
Multithreaded SLPA 0.6929 0.2969 4.0367 2.8901 0.4333

Itis also important to consider the type of output commu-
nities that an algorithm can produce. As mentioned earlier,
overlapping community detection is more computationally
intensive than disjoint. While the majority of other parallel
solutions perform only disjoint community detection, our
multithreaded SLPA can produce either disjoint or overlap-
ping communities, depending on the value of threshold r.

Even though execution time is certainly one of the
most important performance measures for an end user, it is
often not suitable for direct comparisons between different
implementations of community detection methods. Unlike
execution time which depends on specific hardware, oper-
ating systems, code execution environments, compiler opti-
mizations, and other factors, speedup evens out architectural
and algorithmic differences. It is therefore a much better way
to compare runtime performance of community detection
algorithms.

Another important factor that makes it hard to compare
the results produced by competing methods is the use of
different datasets. Although several datasets seem to appear
more often than the others (e.g., Amazon, DBLP, and LFR)
there is no established set of datasets which are publicly
available and widely accepted as a benchmark for high
performance community detection. If such a benchmark
existed, it should have contained a balanced blend of both
real-world and synthetic datasets of varying size (from
hundreds of thousands of nodes and edges to billion scale
networks) carefully selected so that it does not give a priori
advantage to any of the possible approaches to community
detection.

There are datasets which are supplied with so-called
ground truth communities, although in some cases it is very
questionable whether these communities in fact represent
the ground truth. For other networks, it is not feasible to
establish the ground truth at all. Again, there is no established
consensus on whether datasets with or without ground
truth communities (or a combination of both types) should
be evaluated. Different researchers approach this problem
differently, mainly depending on the datasets to which they
have access. There is also a problem of using proprietary
datasets which might not be available to other researchers to
test their community detection implementations.

Besides using different datasets, researchers also use
different metrics to evaluate the quality of community detec-
tion. A decade or so ago, modularity was the dominating
player on the community quality field. However, after it
was discovered that the original formulation of modularity
suffers from several drawbacks, a number of new or extended
metrics have been proposed and a number of old, almost
forgotten methods have been rediscovered. A detailed review
of different existing and emerging metrics can be found
n [20]. Still, there is no agreement on which metric (or
combination of metrics) should be chosen as an authoritative
measure of the quality of community detection performed by
a certain algorithm.

From all of the above, it follows that performing fair com-
parisons of different community detection implementations
is difficult. To take just one example, let us consider PLP/EPP,
SCD, and multithreaded SLPA.

(i) Both PLP/EPP and SCD methods (see Section 2) are
only able to detect disjoint communities while mul-
tithreaded SLPA performs overlapping community
detection.

(ii) Experiments with SCD were only conducted with the
number of threads ranging from 1 to 4. In contrast,
in our approach described in Section 3, we evaluate
the method and show its scalability for all datasets
being tested, including large graphs, and the number
of cores ranging from 1 to 64. PLP was tested for
a slightly wider range of parallel configurations (1
to 16 threads) but only for one dataset, uk-2002.
For the Foursquare network which is similar in size
to uk-2002, the values of speedup demonstrated by
multithreaded SLPA (see Figure 19) are comparable to
the results of SCD described in Section 2.

(iii) Modularity is the only measure of community quality
considered by PLP/EPP. SCD uses NMI and average
F, score. Multithreaded SLPA uses several different
metrics, including NMI and F-measure. However, for
the reasons explained above the values of NMI and
F-measure may not be in the conventional range of
[0, 1]. Therefore, it is not feasible to directly compare
the values of community quality metrics obtained in
our experiments with the SCD results.

Scientific Programming

In conclusion, the community structure found by multi-
threaded SLPA has almost the same quality as that discovered
by sequential SLPA. Moreover, we have demonstrated in
[17, 26] that sequential SLPA is very competitive compared
to other community detection algorithms, which implies the
effectiveness of multithreaded SLPA on community detec-
tion.

5. Conclusion and Future Work

In this paper, we evaluated the performance of a multi-
threaded parallel implementation of SLPA and showed that
using modern multiprocessor and multicore architectures
can significantly reduce the time required to analyze the
structure of different networks and output communities. We
found that despite the fact that the rate of speedup slows down
as the number of processors is increased, it still pays off to
utilize as many cores as the underlying hardware has avail-
able. Our multithreaded SLPA implementation was proven
to be scalable in terms of both increasing the number of cores
and analyzing increasingly larger networks. Furthermore, the
properties of the detected communities closely match those
produced by the base sequential algorithm, as verified using
several metrics. Given a sufficient number of processors, the
parallel SLPA can reliably process networks with millions
of nodes and accurately detect meaningful communities in
minutes and hours.

In our future work, we plan to explore other parallel
programming paradigms and compare their performance
with our multithreaded approach.

Disclaimer

The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Laboratory or the US Government.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The research was sponsored in part by the Army Research
Laboratory under Cooperative Agreement no. W9IINF-09-
2-0053, by the EU’s 7FP Grant Agreement no. 316097, and by
the Polish National Science Centre, the Decision no. DEC-
2013/09/B/ST6/02317.

References
[1] R.E.Park, Human Communities: The City and Human Ecology,
vol. 2, Free Press, 1952.

[2] J. Xie, S. Sreenivasan, G. Korniss, W. Zhang, C. Lim, and
B. K. Szymanski, “Social consensus through the influence of

—
)

(10]

(11]

(12]

(13]

(14]

(16]

17

committed minorities,” Physical Review E, vol. 84, no. 1, Article
ID 011130, 8 pages, 2011.

P. Sah, L. O. Singh, A. Clauset, and S. Bansal, “Exploring
community structure in biological networks with random
graphs,” BioRxiv, 2013.

G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering
the overlapping community structure of complex networks in
nature and society;” Nature, vol. 435, no. 7043, pp. 814-818, 2005.

J. A. Hartigan and M. A. Wong, “Algorithm as 136: a k-means
clustering algorithm,” Journal of the Royal Statistical Society
Series C (Applied Statistics), vol. 28, no. 1, pp. 100-108, 1979.

J. Baumes, M. Goldberg, and M. Magdon-Ismail, “Efficient
identification of overlapping communities,” in Intelligence and
Security Informatics, pp. 27-36, Springer, Berlin, Germany,
2005.

X. Xu, J. Jager, and H.-P. Kriegel, “A fast parallel clustering algo-
rithm for large spatial databases,” Data Mining and Knowledge
Discovery, vol. 3, no. 3, pp. 263-290, 1999.

M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise;,” in Proceedings of the 2nd International Conference on
Knowledge Discovery and Data Mining, vol. 1996, pp. 226-231,
AAALI Press, 1996.

Y. Zhang, J. Wang, Y. Wang, and L. Zhou, “Parallel community
detection on large networks with propinquity dynamics,” in
Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 997-1006, ACM,
July 2009.

U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: a petas-
cale graph mining system implementation and observations,”
in Proceedings of the 9th IEEE International Conference on Data
Mining (ICDM °09), pp. 229-238, IEEE, 20009.

U. Kang, B. Meeder, and C. Faloutsos, “Spectral analysis
for billion-scale graphs: discoveries and implementation,” in
Advances in Knowledge Discovery and Data Mining: 15th Pacific-
Asia Conference, PAKDD 2011, Shenzhen, China, May 24-27,
2011, Proceedings, Part I, vol. 6635 of Lecture Notes in Computer
Science, pp. 13-25, Springer, Berlin, Germany, 2011.

E.J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader, “Parallel
community detection for massive graphs,” in Parallel Processing
and Applied Mathematics, vol. 7203, pp. 286-296, Springer,
Berlin, Germany, 2012.

A. Prat-Pérez, D. Dominguez-Sal, and J.-L. Larriba-Pey, “High
quality, scalable and parallel community detection for large real
graphs,” in Proceedings of the 23rd International Conference on
World Wide Web (WWW ’14), pp. 225-236, World Wide Web
Conferences Steering Committee, Seoul, Republic of Korea,
April 2014.

A. Prat-Pérez, D. Dominguez-Sal, J. M. Brunat, and J.-L.
Larriba-Pey, “Shaping communities out of triangles,” in Pro-
ceedings of the 21st ACM International Conference on Informa-
tion and Knowledge Management (CIKM ’12), pp. 1677-1681,
ACM, November 2012.

U. N. Raghavan, R. Albert, and S. Kumara, “Near linear
time algorithm to detect community structures in large-scale
networks,” Physical Review E: Statistical, Nonlinear, and Soft
Matter Physics, vol. 76, no. 3, Article ID 036106, 2007.

S. Gregory, “Finding overlapping communities in networks by

label propagation,” New Journal of Physics, vol. 12, no. 10, Article
1D 103018, 2010.

18

(17]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(30]

(31]

(33]

J. Xie and B. K. Szymanski, “Towards linear time overlapping
community detection in social networks,” in Advances in Knowl-
edge Discovery and Data Mining, pp. 25-36, Springer, Berlin,
Germany, 2012.

C. L. Staudt and H. Meyerhenke, “Engineering high-Per-
formance community detection heuristics for massive graphs,”
in Proceedings of the 42nd Annual International Conference on
Parallel Processing, pp. 180-189, Lyon, France, October 2013.

M. E. J. Newman and M. Girvan, “Finding and evaluating
community structure in networks,” Physical Review E, vol. 69,
no. 2, Article ID 026113, 2004.

M. Chen, K. Kuzmin, and B. K. Szymanski, “Community
detection via maximization of modularity and its variants,”
IEEE Transactions on Computational Social Systems, vol. 1, no.
1, pp. 46-65, 2014.

K. Kuzmin, S. Y. Shah, and B. K. Szymanski, “Parallel overlap-
ping community detection with SLPA,” in Proceedings of the
International Conference on Social Computing (SocialCom ’13),
pp. 204-212, IEEE, September 2013.

J. Yang and J. Leskovec, “Defining and evaluating network
communities based on ground-truth,” in Proceedings of the
ACM SIGKDD Workshop on Mining Data Semantics, Beijing,
China, 2012.

J. Leskovec, Amazon Product Co-Purchasing Network and
Ground-Truth Communities, 2014, http://snap.stanford.edu/data/
com-Amazon.html.

“DBLP collaboration network and groundtruth communities,”
2014, http://snap.stanford.edu/data/com-DBLPhtml.

LiveJournal social network and groundtruth communities,
2014, http://snap.stanford.edu/data/com-LiveJournal. html.

J. Xie, S. Kelley, and B. K. Szymanski, “Overlapping community
detection in networks: the state-of-the-art and comparative
study, ACM Computing Surveys, vol. 45, no. 4, Article ID
2501657, 2013.

A. Lancichinetti, S. Fortunato, and J. Kertész, “Detecting the
overlapping and hierarchical community structure in complex
networks,” New Journal of Physics, vol. 11, no. 3, Article ID
033015, 2009.

M. Chen, T. Nguyen, and B. K. Szymanski, “A new metric for
quality of network community structure,” ASE Human Journal,
vol. 2, no. 4, pp. 226-240, 2013.

S. Zhang, R.-S. Wang, and X.-S. Zhang, “Identification of
overlapping community structure in complex networks using
fuzzy c-means clustering,” Physica A: Statistical Mechanics and
Its Applications, vol. 374, no. 1, pp. 483-490, 2007.

T. Nepusz, A. Petroczi, L. Négyessy, and F. Bazso, “Fuzzy com-
munities and the concept of bridgeness in complex networks,”
Physical Review E: Statistical, Nonlinear, and Soft Matter Physics,
vol. 77, no. 1, Article ID 016107, 2008.

H. Shen, X. Cheng, K. Cai, and M.-B. Hu, “Detect overlapping
and hierarchical community structure in networks,” Physica A:
Statistical Mechanics and its Applications, vol. 388, no. 8, pp.
1706-1712, 2009.

V. Nicosia, G. Mangioni, V. Carchiolo, and M. Malgeri, “Extend-
ing the definition of modularity to directed graphs with overlap-
ping communities,” Journal of Statistical Mechanics: Theory and
Experiment, vol. 2009, no. 3, Article ID P03024, 2009.

H.-W. Shen, X.-Q. Cheng, and J.-E. Guo, “Quantifying and
identifying the overlapping community structure in networks,”
Journal of Statistical Mechanics: Theory and Experiment, vol.
2009, no. 7, Article ID P07042, 2009.

Scientific Programming

[34] D. Chen, M. Shang, Z. Lv, and Y. Fu, “Detecting overlapping

communities of weighted networks via a local algorithm,”
Physica A: Statistical Mechanics and its Applications, vol. 389, no.
19, pp. 4177-4187, 2010.

