
Defining and Discovering Communities in Social
Networks

Stephen Kelley, Mark Goldberg, Malik Magdon-Ismail, Konstantin Mertsalov, and
Al Wallace

1 Introduction

The categorization of vertices in a network is a common task across a multitude of
domains. Specifically, structural divisions into internally well connected sets have
been shown to be useful in computer science, social science,and biology. In each of
these areas, grouping vertices using structural boundaries helps one to understand
the underlying processes of a network. Identifying such groupings is a non-trivial
task, and a subject of intense research in recent years.

In general, identifying groups of vertices in a network based on structural prop-
erties alone is known ascommunity detection. Methods to identify such groups take
a wide variety of approaches, mirroring the diversity in domains where an accurate
view of structural communities is useful. Depending on the definition of a com-
munity used, one could discover groups which maximize a global quality function,
contain a specific set of substructures, or satisfy a set of local criteria. Each of these
definitions has resulted in a number of methods which aim to produce the “best” set
of communities relative to the definition chosen.

Rather than focusing on a number of features which differentiate these definitions
and methods from each other, this text will focus on perhaps the most fundamental
question in the field of community detection; should groups be disjoint or should
they be allowed to overlap?

In the past, the field of community detection has primarily focused on identi-
fying a set of groups such that each vertex in the network is assigned to a single
group. Such a requirement results in a set of disjoint groupscovering the entire net-
work. However, with the explosion of social network and on-line communication
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data available, research has expanded towards methods which consider overlapping
groups.

In the remainder of this text, we will first include a brief discussion on the intu-
ition behind disjoint and overlapping communities as well as provide the reader with
a basic understanding of a small sample of commonly used methods for community
detection. Further into the text, we will present the difficulties involved when detect-
ing overlapping communities and introduce a method for discovering overlapping
communities which avoids these common pitfalls. This algorithm will be presented
with results on real and synthetic benchmark networks. Finally, we will show that
in real data, communities which do are natural and necessaryto capture many of the
associations between vertices in a network.

2 Methods for Detecting Community Structure

The most fundamental division between community definitions is whether or not
vertices can belong to a single community or any number of communities. Justifi-
cations exist for each approach, and ultimately, the selection of which definition to
use is likely domain and application dependent. For instance, when analyzing bi-
ological protein interaction networks, if an analyst wishes to generate a taxonomy
of proteins, a hierarchical disjoint method is desired. When analyzing social net-
works, due to the variety of affiliations and interests that an individual may have, an
overlapping method may be more appropriate.

We begin with a brief examination of some of the previous workin the area of
community detection to give the reader a sense of current methods. This examina-
tion is far from complete; it is intended to serve only as a brief introduction. For a
more comprehensive survey covering a variety of methods in depth, please see [8].

2.1 Disjoint Community Detection

The majority of current methods work treat the problem of locating communities
as a hierarchical partitioning problem. According to this approach, the community
structure of a network is assumed to be hierarchical; individuals form disjoint groups
which become subgroups of larger groups until one group, comprising the whole so-
ciety, is formed. Such methods for a tree of subgroup relations called a dendrogram.
A dendrogram allows the community structure of a network to be at various reso-
lutions. An example of this structure, which is commonly used as a visual tool for
hierarchical clustering methods, is given in Figure 1.

Originally, the method for detecting a hierarchical grouping in networks was to
repetitively identify edges which do not belong to the same dense subgraph [9, 20].
If we consider a group containing all individuals, and for each edge, compute the
centrality according to one of a number of definitions (information, shortest path,
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Fig. 1 Dendrogram visualization detailing the merging or splitting communities until the entire
society is contained in a single group or until each community consists of a single individual.

circuit, betweenness, etc ). Edges with higher centrality scores will be ones which
link, rather than compose, dense areas of the network. Such edges are repetitively
removed. Those edges removed first will be edges which form a significant connec-
tion between two dense areas of a network. This process of calculation and removal
is performed until the graph becomes disconnected. Upon disconnection, a single
group splits into two groups containing each component. This process is continued
until each vertex is contained in a group by itself. As a result, a hierarchy of splits
is produced, showing the relationship between small groupsand larger ones.

This analysis can be quite useful for networks where visual inspection of the den-
drogram provides an accurate picture of However, this method lacks the ability to
point out precisely at what level of the hierarchy the “best”groups have been dis-
covered. For large networks where visual inspection is impossible or for networks
in which there exists no intuition to suggest the best set of groups, this fact is prob-
lematic. In order to determine the best split in an automatedmanner, the notion of
modularity[16] has been proposed. This measure can be expressed as

Q =
1

2m ∑
i, j∈V

[Ai, j −
kik j

2m
]δ (ci ,c j) (1)

wherem is the number of edges in a network,Ai, j is the edge weight connecting
vertex i and j, ki is the degree of vertexi, andδ (ci ,c j is a function returning 1 if
the community assignments of vertexi and vertexj are the same and 0 otherwise.
Intuitively, the measure expresses the difference betweenthe number of edges inside
communities and the number which are expected to be within a community, given
a community’s degree. Given this measure, one can compare the modularity of all
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levels of the hierarchy and identify the most defined set of groups compared to the
null model.

The introduction of modularity as an evaluation measure of group quality has
resulted in a number of methods which attempt to optimize this value. The most
well known of these methods is a greedy agglomerative methodoriginally proposed
by Clauset, Newman, and Newman [5]. This algorithm begins byplacing vertices
in unique communities and merging those which produce the largest increase in
modularity. Additional methods have been proposed based onsimulated anneal-
ing [11], extremal optimization [7], methods from statistical mechanics [22], and
other heuristic optimizations [3]. Recent work has also identified a variety of non-
hierarchical utilizing label propagation [21] and minimizing the amount of informa-
tion needed to express random walks in a network [23].

2.2 Overlapping Communities

While hierarchical grouping is valid for some types of networks,e.g., organizational
networks or taxonomies, intuition and experience suggest that social networks con-
tain pairs of communities that overlap while not containingeach other as a sub-
community. Consider an individual in a social network representing “friendship.”
He or she may have friendship relations across many different social circles, such as
those formed in the workplace, by a family unit, by a religious group, or by social
clubs. In this case, assuming social structure of the network to be hierarchical might
lead to missing important information about members’ attachment to the numerous
social circles with which they concurrently interact.

However, the shift from disjoint community assignments to non-disjoint assign-
ments is not a simple one. Various interpretations exist forhow vertices can be
assigned to groups. Specifically, there is some debate as to whether the goal is to
identify a weighted assignment from an individual to all groups or a set of binary
assignments indicating an individual’s membership. The former has been used in
identifying fuzzy groups via probabilistic assignment [6,26] and maximizing an
overlapping version of modularity [17]. Additional work has been done on finding
the best set of communities such that each individual can only associate withk sets.
An interesting algorithm based on label propagation can be found in [?]. This text
however, will examine only the problem of deriving a set of binary individual to
group mappings without such constraints. Such a mapping allows communities to
be discovered at a local level, where a vertex’s associationwith a group is deter-
mined independently of any association with other groups.

Methods which identify these non-fuzzy overlapping communities tend to be one
of two types; either the algorithm attempts to identify instances of a specific struc-
ture in the network or a modularity value is calculated relative to a small subset of
the network. It is important to notice that, unlike the global measure of modularity,
each of these tasks is local in nature.
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2.2.1 Clique Percolation

An example algorithm which attempts to identify a defined, local substructure which
is indicative of a community is the Clique Percolation Method (CPM) originally
proposed in [19]. In a nutshell, the algorithm first finds all cliques of sizek, called
k-cliques, and defines ak-clique graph whose nodes are thek-cliques. Two nodes are
adjacent in thek-clique graph if the corresponding cliques sharek−1 nodes. The
nodes in the union of thek-cliques corresponding to each connected component are
declared to be a community. Fork = 2, clique percolation defines the communities
as the connected components in the network.

CPM attempts to discover communities by identifying complete subgraphs of
size k. One can claim that, for reasonably sized values ofk, such substructure is
clearly an instance of community structure. However, this definition sets a very rigid
definition for a community. If one edge of a otherwise complete subgraph is missing
or if two k-cliques overlap by onlyk−2 nodes, it is not considered a community.
Clique percolation would not, for example, be able to find thegroup illustrated in the
toy community in Figure 2. The main problem with such a definition is that it is too
rigid and is uniform over the whole network, requiring all communities to share the
same structural composition. Additionally, identifyingk-cliques of arbitrary sizes
can be very expensive computationally.

2.2.2 Local Optimization

In an effort to identify communities of various composition, new methods have been
proposed based on the notion of local optimality. Generally, these methods begin
with some set of seed groups which are then optimized relative to a local density
function. The seed groups are considered communities when asingle vertex addition
or removal does not increase the group’s quality relative toa density function.

Despite a large number of proposed methods for detecting communities via lo-
cal optimization [2, 4, 15], there has been a general agreement in the form of the
density function used to optimize seed groups. Intuitively, the search for commu-
nity structure can be viewed as a search for sets of individuals which are intensely
connected relative to their isolation with the rest of the network. Specifically, this
can be expressed in a manner representative of the functionsin previous literature
as the ratio of edges internal to the set over all edges connected to the set. This can
be given as

d(S) =
win

win +wout
(2)

wherewin is the number of edges internal to the setSandwout is the number of edges
connecting the setS to the rest of the network. This and similar density functions
are essentially local modularity measures which attempt tomaximize internal while
minimizing external edges.
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Fig. 2 A demonstration of local optimality

Methods based on local optimization add and remove a vertex relative to a set’s
density when the vertex is evaluated. The implications of this will be discussed at
length later in the chapter. However, for now it is only important to realize that
locally optimal sets are constructed relative to only theirneighborhood. This allows
a wide range of communities, with both high and low densities, to be discovered.

To motivate why this is important, consider the stylized example in Figure 2.
This figure depicts some form of organized/coordinated ring-group which would in-
tuitively pass as a community (for example, a committee of NSF-reviewers). Since
we allow overlapping groups, a node could belong to multiplecommunities, as illus-
trated by the shaded areas. A node belongs simultaneously tothis ring-community
as well as to other communities. By virtue of belonging to those other communities,
the node communicates extensively outside the ring-group (especially if the node
belongs to many other communities). This means that the nodedisplaysmore extra-
groupsimilarity than intra-group similarity with respect to thering-group. There is
no flaw with the intuition that a community should display intra-group similarity;
the reason the extra-group similarity can be larger is because the communities can
overlap. Note that the ring itself in our example, though it isconnectedand appears
structured, is not particularly dense; in fact, if each member connects toδ external
nodes, thend(S) = 1/(δ + 1), which can be sufficiently small. Other communities
may not have as low a density as this.

We can go further in claiming that this subset should be considered a community
independent of the nature of the other communities in the network. Accepting the
localityproperty of the communities suggests that the methods whichdefine a global
objective function (for example, modularity [16]) and optimize it to identify all the
communities might fail to discover the ring-community. Such methods have found
success in partitioning a network, but when overlap is allowed and essential, it is not
even clear how to properly define global objective functions.

In the toy ring group shown in Figure 2, the density of our ring-community is
d(S) = 1/(δ +1). One can easily verify that if we remove a nodeu from the group,
its density drops to

d(S−u) =
1

δ +1+ δ/(|S|−2)
. (3)
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Alternatively, suppose we try to add one of the neighboring nodesz to S. To illus-
trate, assume that this node has one connection intoS andβ connections to other
nodes. In this case, addingzchanges the density to

d(S+z) =
1+1/|S|

δ +1+ β/|S|
, (4)

which is smaller thand(S), whenz has more connections to the outside world than
the average for nodes already inS. This means thatS is locally optimalwith respect
to single node moves. Thus, the requirement of local optimality can captureSas a
community.

The main benefits of defining communities as locally optimal sets are that sets
with vastly different structural properties can be locallyoptimal, with varying den-
sities and that locally optimal communities can overlap. Not being able to improve
a community (as measured by the densityd) is intuitive; this doesnot require a
high density or a specific structure of the community. The unified idea of the dis-
cussion is that a community is alocally defined object. A community in one part
of the network should not rely on what is going on in another part of the network.
Further, community structure can vary over the network – communication in some
communities can be more intense than in others; their structures can be different.

3 Local Optimality Examined

The benefits of local optimality as a mechanism to discover overlapping commu-
nities have not been lost on researchers. However, despite general agreement that
locally optimal sets of vertices form reasonable communities, there is a lack of con-
sensus as to the specifics of the notion of local optimality. Further, additional issues
which present themselves when identifying local communities are largely ignored.
In this section, we begin by examining the notions of local optimality and density
functions. Consolidating this discussion, the section is concluded with a set of ax-
ioms which we suggest to be the simplest, smallest set of criteria which any local,
overlapping groups should satisfy.

3.1 Vertex Removals and Connectivity

As previously stated, various methods have been proposed which attempt to opti-
mize local density functions to identify potentially overlapping communities. How-
ever, methods define optimality with respect to different processes. In the process of
optimization, some methods allow vertices to be added and removed while others
allow only additions. This results in two different notionsof local optimality.
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An additional problem, which exists with any algorithm allowing vertices to
be removed during the optimization, involves the connectivity of communities. As
shown by the adding condition, whether a vertex is added to a group or not is de-
termined by the distribution of the the vertex’s degree as well as the community’s
density at the time of consideration. This may cause a cut vertex, which was previ-
ously inserted into the set based on an earlier, lower density to be removed, thereby
disconnecting the set. Producing a disconnected set of vertices in a grouping algo-
rithm is clearly a problem and affects those local optimization algorithms provided
by Baumes[2] and Lancichinetti [15].Clauset’s algorithm in [4] successfully avoids
this problem by only adding to the group during the optimization, and [24] only
merges candidate groups, ensuring the connectivity of the resulting set.

Examining Figure 3, a graph is shown which demonstrates thisproblem. Con-
sider a candidate group being optimized containing only vertex 1. Initially, the set’s
density is 0, as there are no internal edges. Upon iterating through all vertices in or-
der of increasing degree, vertex 2 is added to the cluster. This results in an increase in
density due to the addition of an internal edge. Proceeding to Figure 3(c), the group
expands to contain the chains and triangles connected to vertex 2. At this point how-
ever, the density has increased such that the removal condition given above in (7)
is now true. This will result in the removal of vertex 2 and thedisconnection of the
set. Vertex 1 will also be removed producing a locally optimal, disconnected set.

3.2 Tuning Parameters

Examining the previously defined density function in (2), wewish to determine
the conditions by which a vertex is added or removed from the set. Consider the
situation detailed in Figure 4. Here, some vertexi is being considered for addition
into the setC. The vertex’s degreeki is split into α andβ such thatα = ∑

j∈C

wi, j ,

β = ∑
j /∈C

wi, j , andki = α + β . For the vertexi to be added to the set, the density of

C∪{i}must be greater than the density ofC alone. Therefore, we have

win

win +wout
<

win + α
win +wout + β

. (5)

Which can be simplified to
α
β

>
win

win +wout
. (6)

Performing a similar procedure for removals, we arrive at

α
β

<
win

win +wout
. (7)

It is clear to see from these two relations, that additions and removals occur
relative to the density of the set at the time of consideration. It is worth examining
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(a) d(C) = 0
1 (b) d(C) = 1
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(c) d(C) = 11
17 (d) d(C) = 8

10

Fig. 3 A sample graph demonstrating the generation of a locally optimal, disconnected group.
The density function being used for this examination is (1).

C
C

α
β

Fig. 4 The breakdown ofα andβ for the addition of a vertex to communityC.
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how this metric behaves when sparse areas of the graph are encountered. Consider
a vertex with degree 2, adjacent to the set being optimized, whereα = β = 1. Since
there is at least one edge cut by the community’s boundary (implying a density< 1),
vertices matching this description will always be added to the group. In practice,
this results in groups with a large amount of edges forming a “core” and expanses
of sparse vertices. This is a problem primarily when dealingwith low degree graphs,
or social networks whose degree distribution is scale free.This effect is shown in
Figure 5. Thed values show how density increases until the entire chain is contained
within the set. For many applications, such a grouping wouldbe inaccurate, since
vertices on the left and right of the chain are very distant and can be presumed to be
dissimilar.

...

d=0 d=1/2 d=2/3 d=(n-1)/n d=1d=3/4d=0 d=1/2 d=2/3 d=3/4 d=1

Fig. 5 A sample graph demonstrating the performance of local optimization on a chain of vertices.

It is unintuitive how a community detection algorithm should handle sparse
chains of vertices. At one end of the spectrum, one could imagine each pair of
vertices composing the most salient communities. However,there could also be an
argument made that the entire chain should compose a group. This can be controlled
by adding a parameter to the density function, introducing apenalty for additions
which significantly reduce the edge probability of the community. The following
density function is proposed

d(C) =
win

win +wout
+ λep. (8)

whereep is the edge probability within the groupC

ep =

∑
i, j∈C

ei, j

|C|× (|C|−1)
(9)

andλ is a parameter allowing the results to be fine-tuned. Settingλ = 0 will produce
the same results as (2), while larger values will increase the amount of significance
the internal edge probability of the set has. This also has the advantage of producing
smaller groups for larger values ofλ which allows groups to be produced across a
wide variety of resolutions. As suggested by Lancichinettiet al. in [15], this param-
eter could also be used to determine the significance of groups. Groups which are
structurally significant could be likely to exist across numerous values ofλ .
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3.3 Local, Overlapping Axioms

Based on the above observations, as well as previous literature, a set of axioms can
be described which any local, community detection method should aim to satisfy.
We now state the minimum requirements of a community.

Connectedness.A community should induce a connected subgraph in the net-
work. If the only way to get from one node to another in the community is via
some external node, it suggests that the community is incomplete.
Local Optimality. According to an appropriate density metricd(), predefined
on all subsets of nodes, the density of a community cannot be improved with the
removal or addition of a single node.

Note, that the local optimality requirement, but not the connectivity requirement,
was first introduced in [1, 2]. Examples can be easily developed of locally optimal
sets that induce disconnected subgraphs. Our community axioms posit, in particu-
lar, that communities are identified “locally,” within one-hop distance from the set.
Specifically, we require local optimality with respect to the addition or removal of a
single vertex. Previously proposed methods have suggestedidentifying locally opti-
mal sets with respect to addition only. However, it can be argued that if a community
can be improved relative to some density function via removal, it is less meaningful
than one constructed via addition and removal. Additionally, one could suggest fur-
ther notions of local optimality which are relative to a larger number of removals or
additions. These other notions of optimality are left for future work. As we will see,
these two axioms alone are sufficient for discovering communities which overlap
and satisfy the intuitive properties we expect of a community.

It is important to note that this definition is quite different from many previous
notions such as those of a “strong” or “weak” community suggested by Raddichi in
[20] as well as the definition of modularity which was previously discussed. Rather,
this definition focuses on a localized approach that eschewsglobally formulated null
models and strict edge-based requirements.

Algorithmically, it is not easy to identify all communitiessatisfying these prop-
erties, and so we resort to a simple heuristic which we discuss next. Our goal is to
show that the communities discovered using this heuristic identify salient communi-
ties in both common benchmark data as well as real, observed on-line associations.

4 Connected Iterative Scan

In [2], the authors describe a community detection algorithm, termed Iterative Scan.
Here we describe a modification of IS to discover communitiesthe previously iden-
tified axioms of optimality and connectedness.

Iterative Scan, IS, consists of repeated “scans” each starting with an initial set
developed by the previous scan (a “seed-set” for the first iteration). It examines
each node of the network once, adding or removing it if such anaction increases
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the current density of the set. The scans are repeated until the set is locally optimal
with respect to a defined density metric. The choice of the seed-sets is not predeter-
mined; they can be the nodes, or the edges of the network. A procedure for seeding,
called LinkAggregate, is presented in [1]. LinkAggregate efficiently produces seed-
sets that form a cover (with some overlap) of the entire vertex set. The nodes are
evaluated by IS in the order of increasing node-degree, fromlow to high degree. It-
erative scan in this form had been used for a variety of interesting applications such
as modeling dynamic networks [10]. A similar method, implementing the idea of
the greedy local optimization (as a replacement of a scan in IS) was later given in
[15]. For every iteration, the algorithm examines all vertices in order to find the one
which causes the maximum increase of the density. That vertex is used to update the
current set and any density improving removals are then performed.

The density metric itself can be defined in a number of ways; our analysis uses a
modification of the standard density function in Equation 2.Rather than usingwin,
recent literature [15] has proposed using using the internal and external degree of
all vertices in the group rather than the number of edges. This is a slight modifica-
tion, resulting in the the use of 2∗win in place ofwin. For the sake of comparison
to previous work, we will optimize using this density function. Our experiments
show that in many social networks, there is a very large set ofpotential communi-
ties, i.e., sets that satisfy the two axioms above. Thus, filtering of candidate sets is
often necessary and should be done as dictated by the specifics of the application in
which community structure is useful. One possibility is to order the candidates by
d(S), and consider as most “interesting” those communities which had more inter-
nal than external communication (d(S) > 1

3). This filter is consistent with the notion
of a “weak” community as defined by Raddicchiet al in [20] and is done in this
work to restrict the scope of the analysis for computationalreasons. Note that when
overlap is allowed, this additional requirement might not be satisfied by all com-
munities. The other possibility of filtering is to look at thecommunities for which
d(S) < 1

3, as these communities are still connected and locally optimal, even though
their members communicate outside of the community a significant fraction of time,
which results in sparse internal communication.

To ensure the connectivity of the identified communities, wemodify IS and term
the resulting algorithm Connected Iterative Scan, CIS. Psuedocode for this algo-
rithm is presented in Algorithm 1. As is the case with IS, CIS consists of a number
of scans that are repeated for each current set until no change of the set occurs. The
set is then declared to be a community. Every scan proceeds through the nodes in
the order of increasing node degree. Once a scan is finished, the set’s connectivity
is examined. If the set consists of multiple connected components, it is replaced
by the connected component with the highest density, after which the next scan
starts. Note that selecting only the highest density component effectively sidesteps
the issue of repeatedly optimizing to the same, disconnected cluster. The specific
selection of this rule for identifying connected, locally optimal sets was motivated
by the desire to generate as many groups as possible. The running time of the al-
gorithm however, suffers from repetitive connectivity evaluations. For applications
where running time is important, one can simply discard those sets which are not
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Algorithm 1 Connected Iterative Scan
Require: G = (V,E),S 6= /0
Ensure: density(S) ≥density(S∪{v}) & density(S) ≥density(S\{v}),∀v∈V

improved← true
while improved ==true do

improved← false
for all v∈V do

if v∈ S then
if density(S\{v}) >density(S) then

S← S\{v}
improved← true

end if
else

if density(S∪{v}) >density(S) then
S← S∪{v}
improved← true

end if
end if

end for
S←maxComponent(S)

end while

connected as a additional post-processing step. Finally, the seeding is this text is
done using placing each vertex in its own initial seed community.

The disadvantage of CIS is the same as that of IS; both methodsmay produce
a large number of highly overlapping communities. However,this problem can be
managed by effective post-processing of results and merging of highly similar com-
munities. Sample results of CIS for a community analysis of Zachary’s Karate Club
data set [25] are given in Figure 6. This network represents aset of friendships with
in a collegiate martial arts club. Performing analysis on the data, which was col-
lected while the group was undergoing a fissure, provides interesting insight into
the set of individuals for whom selecting which splinter group to join was not a triv-
ial choice. Using CIS, these individuals exist in the overlap between the two larger
groups in the network. These groups are clearly salient and similar results are found
across a variety of literature in community detection.

The complexity of CIS is difficult to analyze due to its dependence on the number
and quality of the seeds being optimized as well as the underlying graph structure.
However, similar optimization techniques have previously[15, 1] been empirically
shown to have a running time on the order ofO(n2). For many graphs, running
time can likely be reduced by introducing higher quality seeds, utilizing a simpler
density function, or simply throwing out locally optimal, disconnected sets rather
than checking for connectivity at each iteration. Additionally, since the optimization
process is independent for each seed, the algorithm is highly parallelizable.
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Fig. 6 Overlapping groups found in Zachary’s Karate Club dataset.Different shapes identify the
eventual group division. Groups were ordered to correspondto the number of distinct seeds which
produced them. Groups were then selected until the graph wascovered. Additional examination of
groups which are produced by fewer seeds offers insight intopotentially overlapping subgroups of
the primary groups presented here.

4.1 Benchmark Performance

Quantifying the performance of the algorithm is difficult due to the approach.
Namely, few other methods aim to produce a large set of locally optimal groups.
Rather, they tend to focus on finding partitionings or coverswhich best express the
data. In addition, methods which allow for overlap tend to beinsufficient due to the
unsatisfied community axioms. In this section, numerous benchmarks will be exam-
ined. First, a method to compare two sets of overlapping groups will be presented.
Next, a small, toy graph with uniform degree proposed by Girvan and Newman will
be considered. Then, random scale free networks with embedded community struc-
ture will be explored for the non-overlapping case. Each of these experiments will
be evaluated via the Normalized Mutual Information measureoriginally proposed
in [15].
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4.1.1 GN Benchmark

One of the first benchmarks proposed for community detectionalgorithms was pro-
posed by Girvan and Newman in [9]. This benchmark dataset, consists of 128 ver-
tices divided into four groups of 32. Each vertex has a degreeof 16. The strength
of the community associations are given by a mixing parameter which indicates the
probability that an edge is placed between two communities rather than internal to
a single community. Specifically, this mixing parameter is given by

µk =
ko

ki +ko
(10)

whereko is the number of edges connecting a vertex to a vertex in another commu-
nity andki are the number of edges connecting a vertex to other verticeswithin a
community. It should be explicitly noted that this benchmark assigns each vertex to
exactly one community during network generation. Despite this, it is important that
methods which identify non-disjoint communities be capable of producing accurate
communities even when the underlying structures are disjoint.

For Connected Iterative Scan, the results are given in Figure 7. Each point repre-
sents the average normalized mutual information over 25 graphs with a given mix-
ing parameter. Seeds are generated by placing each vertex ina candidate cluster.
The results shown are a reflection of what is considered to be the “base” settings of
the algorithm. This configuration is the density function previously described in the
text, vertices ordered by increasing degree, and seeding done by placing each vertex
into a seed group by itself.

The two curves in Figure 7 show the result of taking all locally optimal sets
discovered by the algorithm as well as using some domain knowledge to filter out the
four most frequently discovered sets. It should be noted in the results that the curve
is similar to those produced via other methods, though with slightly less accuracy
for networks with well defined group structure.

4.1.2 LFR Disjoint Benchmark

A more realistic set of benchmark graphs can be found using the LFR benchmark.
Here, a scale free graph is generated with communities of varying sizes. This bench-
mark was first used in [14] to compare various methods of community detection on
a more complex network than the GN benchmark. For the experiments contained
within this text, graphs are generated matching a power-lawdegree distribution with
αd = 2 and a power-law community size distribution withαc = 1. For all networks,
the average degree of each vertex is 20 and the max degree 50. Community sizes are
limited to 10-50 for runs marked “S” and 20-100 for runs marked “B”. The output of
CIS is processed for evaluation by removing duplicate communities and removing
those communities which contain the entire graph. Each data-point represents the
average of 25 trials.
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Fig. 7 Normalized mutual information for Connected Iterative Scan on GN benchmark graphs

The results of this analysis using CIS and CPM are given in Figure 8. Figure 8(a)
clearly shows the limitations of identifying a specific structure when compared to
Figures 8(b)-8(d). Identifying overlapping cliques is much less accurate as group
size increases. While CPM produces better results for networks with well defined,
small communities, Connected Iterative Scan produces better results in networks
with larger community sizes as well as those networks with less well defined com-
munities. The quality of the communities produced via CIS are comparatively stable
in the face of changing community and graph properties.

4.1.3 LFR Overlapping Benchmark

The LFR benchmark software also allows groups to be embeddedsuch that a given
portion of individuals exist in a specified number of groups.This allows algorithms
to be compared on networks with known community overlap. Taking the same de-
gree and community size distributions as the previous set ofexperiments, Connected
Iterative Scan and CPM can be compared at varying levels of overlap. Figures 9 and
10 detail the results of this comparison for 10% and 30% of thevertices existing in
2 communities. Again, the same general trend exists; identifying communities by
looking for a set of rigid structural traits fails to identify larger embedded communi-
ties, while those produced by CIS are discovered with the same accuracy regardless
of community composition.
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Fig. 8 Connected Iterative Scan vs CFinder for LFR benchmark graphs with disjoint embedded
communities

4.2 λ value

Intuitively, inclusion of the internal edge probability inthe density function for Con-
nected Iterative Scan allows the algorithm to be tuned to discover different types of
communities. It introduces a criteria for addition different from what was initially
proposed during the development of Iterative Scan. Whenλ > 0, the vertex being
considered for addition must strike a balance between the change in the original
density value and the change in edge probability.

This effect can be seen in real networks as well. In this analysis we consider a
network in which vertices represent football teams affiliated with universities within
the United States. Typically, teams are members of conferences, within which they
play a significant portion of their games. Edges in the network indicate that two
teams played each other. Groupings produced by Connected Iterative Scan can be
compared to the natural divisions created by conferences.

Groupings were performed using a number of different valuesof λ and filtering
the communities by taking only the most discovered groups. The normalized mu-
tual information between the true grouping and the discovered grouping are plotted
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Fig. 9 Connected Iterative Scan vs CFinder for LFR benchmark graphs with overlapping embed-
ded communities where 10% of the vertices associate with 2 communities

in Figure 11. The peak atλ = 0.125 indicates the grouping which most closely
matches the underlying conference structure of the network. Qualitatively, the dif-
ference betweenλ = 0 andλ = 0.125 is an increased focus on small, tight-knit
cores.

5 Significance of Overlap

In order to demonstrate that group overlap is a significant feature of some social
networks, it is important first to consider the features which pairs of groups should
have to indicate that the overlap between them is significant. Consider the over-
lapping groups presented in Figure 12. Here groupA consists of white and grey
vertices, and groupB consists of the the black and grey vertices. By this definition,
individuals represented by vertices colored grey are members of both groupA and
B.



Defining and Discovering Communities in Social Networks 19

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

LFR Benchmarks, Overlap=0.3   

1000, S
1000, B
5000, S
5000, B

(a) Normalized mutual information for Con-
nected Iterative Scan on LFR benchmark
graphs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

LFR Benchmarks, Overlap=0.3   

1000, S
1000, B
5000, S
5000, B

(b) Normalized mutual information for
CFinder on LFR benchmark graphs with k=3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

LFR Benchmarks, Overlap=0.3   

1000, S
1000, B
5000, S
5000, B

(c) Normalized mutual information for
CFinder on LFR benchmark graphs with k=4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

LFR Benchmarks, Overlap=0.3   

1000, S
1000, B
5000, S
5000, B

(d) Normalized mutual information for
CFinder on LFR benchmark graphs with k=5

Fig. 10 Connected Iterative Scan vs CFinder for LFR benchmark graphs where 30% of the ver-
tices associate with 2 communities

For a pair of overlapping groups to havesignificantoverlap, and thus be consid-
ered anon-separable pair, the groups and their overlap must fit certain criteria. In
general, each criterion serves to identify quality of overlapping groups that cannot
be expressed via a single group (the union), or two, or three partitions. These criteria
can be described conceptually as follows.

5.1 Structural Significance

The existence of overlap between a pair of groups should enhance the “quality” of
each of the groups individually. For example, if the qualityof each group is mea-
sured by the ratio of edges internal to the group to those which are cut by the bound-
ary of the group, removingA∩B from A andB in the groups expressed in Figure
12 would result in a decrease in the quality of each group. Thetwo vertices in the
intersectionA∩B have the same degree within each group as they have external to
each group. Thus, relative to the previous quality metric, the vertices should be a



20 Kelley et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  10  20  30  40  50  60  70

P
or

tio
n 

of
 G

ro
up

s

Size

Histogram of Group Sizes for Various λ

λ=0
λ=0.0625

λ=0.125

(a) Size distribution for groups produced with various values ofλ on the
college football dataset.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0  0.05  0.1  0.15  0.2  0.25

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

Lambda Value

Performance with Various Lambda Values on Football Dataset

(b) Plot showing the peak in NMI between the discovered groups and the
ground truth andλ 0.125

Fig. 11 Performance of variousλ values on the college football dataset



Defining and Discovering Communities in Social Networks 21

Fig. 12 An example of a pair of groups that overlap. The overlap is identified by the grey vertices
while individuals in only one group are colored black or white depending on the group of which
they are a member.

part of each group since they increase the numerator while holding the denomina-
tor constant. Therefore, the overlap is the key to the structural significance of both
groups in Figure 12.

5.2 Group Validity

It is also important that each group be somehow verifiable using a reasonable
method relative to the input data. Ideally, using some underlying traits of the in-
dividuals in the network being analyzed, groups should havehigher trait similarity
between members than one would expect if membership in groups were determined
at random. Examples of this type of validation have been usedin various previous
literature, using age and location as traits of the individuals [18]. Group validity is
essential in filtering out groups that are products of randomstructures in the underly-
ing communication graph, and serves to ensure that the groupdetection is accurate.

5.3 Overlap Validity

Using the same notion of trait similarity, the individuals within the overlap must
have some similarity with the remainder of each group of which they are a member.
In Figure 12, the graph is divided into three groups,A−B, B−A, andA∩B (white,
black, and grey respectively). For overlap to be important,A−B andA∩B must be
similar, B−A andA∩B must be similar, andA−B andB−A must be dissimilar,
relative to certain significant traits in the data, that is individuals in the overlap need
to be clearly similar to the remainder of either group. However, it is necessary that
the remaining individuals in each group be dissimilar to those in the other group.
If this dissimilarity does not exist, the overlapping pair can be captured in a single
partition and overlap is not necessary to explain the relationships in the data.
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Pairs of groups that satisfy each of these criteria are fundamentally sound com-
munities due to their structural significance and their group validity. Conceptually,
the existence of overlap validity restricts how the individuals can be placed in a par-
titioning. If all users of the three groups are placed in a single partition, dissimilar
vertices inA−B andB−A are associated. If the vertices are placed in three par-
titions according to color, a strong association betweenA∩B and bothA−B and
B−A is missed. The vertices may be placed in a pair of disjoint groups only if the
similarity betweenA∩B and bothA−B andB−A is highly unbalanced. If the two
similarities are comparable, however, one does not have justification to place the
users in one group or the other. A detailed description of each of these cases is given
further in the text. Significant numbers of non-separable pairs indicate that overlap
is an essential component of communities within the network.

5.4 Measures

It becomes necessary to formulate a set of methodologies to indicate whether the
notions of group validity and overlap validity are satisfiedfor a given community or
pair of communities. We begin by identifying the set of data used in the analysis.

Due to the implementation of the Friend Feed provided by LiveJournal, friend-
ship declarations can serve as an indicator of interest. By declaring a friendship, the
declaring user is notified whenever his or her friend makes a post. It can be assumed
that individuals which attract a large number of these friend declarations are highly
important to the discourse on some set of topics. Thus, friendship declarations serve
as a proxy for some set of declared interests from each user. In this analysis, an
individual is defined as influential if he or she has a friendship in-degree of 300 or
more. This criteria marks approximately 4,800 bloggers as influential.

The selection of a subset of the friendship relations was done for purely compu-
tational reasons, cutting the set of possible friend relations from 500,000 to 5,000.
Additionally, interest declarations could be used as validation data. However, within
LiveJournal, this data is entered via comma separated values, resulting in a much
larger set of possible declarations. Additionally, the popular declared interests, such
as ”books”, ”movies”, or ”music”, are much more universal than the most popu-
lar friendships. Further, words typed with spelling errors, abbreviations, slang, and
the use of synonyms can all be indicative of the same set of topics. The friendship
relationship is used in this situation because of its concreteness.

Now, given that each vertexi has a set of declared friendshipsFi , we can describe
our validation measures. The group validity requirement claims that there should
be more similarity within the group than one would find at random. To measure
this, we define the notion ofinternal pairwise similarity(denotedIPS). For a given
communityC, the internal pairwise similarity can be computed as
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IPS(C) =
∑i∈C ∑ j∈C, j 6=i J(Fi ,Fj)

|C|2−|C|
(11)

whereJ(Fi ,Fj) is the Jaccard index [12] between the two sets. This value canbe
expressed as

J(Fi ,Fj) =
|Fi ∩Fj |

|Fi ∪Fj |
(12)

The valueJ(Fi ,Fj) will be maximized (J(Fi,Fj) = 1) if the setsFi andFj are iden-
tical and will be minimized (J(Fi,Fj) = 0) if the two sets are disjoint. Intermediate
values ofJ(Fi ,Fj) indicate shared friendships and is normalized by the numberof
possible shared friendships between the two individuals. Thus, theIPSvalue mea-
sures the average similarity between the friendship declarations of pairs within the
community. This value is utilized in place of Normalized Mutual Information dis-
cussed earlier due to the fact that the “ground truth” in thissituation is unknown.

Revisiting the notion of overlap validity, it becomes apparent that a method com-
paring sets of friendship declarations are needed. Given a pair of overlapping com-
munitiesA andB, three friendship declaration vectors can be computed. These vec-
tors, denotedLA−B, LB−A, andLA∩B, give the probability that a vertex within each
set indicated by the subscript will declare a given individual in the popular friend
set as a friend. Formally,Li

A∩B can be defined for each of the elements ofLA∩B as

Li
A∩B =

|{x|x∈ A∩B, i ∈ Fx}|

|A∩B|
(13)

whereFx is the set of friends declared for vertexx. Similar vectors can be defined
for LA−B andLB−A.

Once these vectors are constructed, the similarity betweeneach of them can be
calculated via thecosinesimilarity. Formally, this can be given, relative to two equal
dimension vectorsX andY, as

cos(θX,Y) =
X ·Y
‖X‖‖Y‖

(14)

A low value ofcos(θX,Y) indicates that the vectorsX andY are close to orthogonal.
High values indicate that the vectors have similar values across many dimensions.

Given the three friendship declaration vectors described previously, thecosine
similarity between them can give an indication as to whetheror not the overlapping
group satisfies the overlap validity requirement. Namely, that the inter-group sim-
ilarity cos(θLA−B,LB−A) be less than the intra-group similaritiescos(θLA−B,LA∩B) and
cos(θLB−A,LA∩B).

In order to simplify this notion, the intra-group and inter-group similarities can
be combined into a single statistic representing the relative similarity between the
three sets. For the sake of notation, let the inter-group similarity cos(θLA−B,LB−A) be
given by the variableinter and let each of the intra-group similaritiescos(θLA−B,A∩B)
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andcos(θLB−A,A∩B) be given byintraA andintraB respectively. These values can be
combined into a measure of overlap validity as

OV(A,B) =
intraA+ intraB

2
− inter (15)

for values of OV(A,B) > 0, the intersection is more similar to each group than the
remainder of each group is with each other, indicating that the overlap is split in its
association with each set.

5.5 Results on LiveJournal

We applied the Connected Iterative Scan algorithm, CIS, to the LiveJournal dataset
to produce a set of communities which satisfy the axioms. We also partitioned this
graph using the algorithm CNM designed by Clauset, Newman, and Moore ([5]) to
give the reader a point of reference and to demonstrate the difference in community
sets produced by the two methods. Statistics demonstratingthe number of groups,
average size, average density, modularity (Q, only applicable for the partitioning),
and the number of vertices which are placed in at least one community are given in
Table 1.

Statistics of Groups Found via CNM and CIS
Groups AvSize AvDensQ Cov

CNM 264 1190 0.745 0.485 100%
CIS 14903 168.8 0.455 – 47.5%

Table 1 Statistics of groups from CNM and CIS.Q shows the modularity value of the grouping
generated by CNM and “Cov” indicates the portion of verticeswhich are in at least one group.

The partitioning produces a small number of sets across a wide variety of sizes,
while the overlapping group detection produces a much larger number of smaller
groups which do not cover the entire graph. Coverage is not a requirement; it is not
necessary for every node to belong to a cluster. Rather, we are interested in finding
those groups which naturally overlap and studying the significance of this overlap.

If the overlapping groups detected fit the requirement of having structural sig-
nificance, removal of a pair’s overlap will produce a decrease in group quality, as
measured by the densityd. Overlapping groups are more compelling when the over-
lap is structurally necessary for each group. After filtering out subset inclusion (a
trivial form of overlap), the remaining overlapping groupsdisplay a high degree of
structural significance for the overlap. Specifically, for 80.8% of the overlapping
pairs, both groups in the pair experience a decrease in density if the intersection
is removed. Figure 13 shows more details of the exact distribution of changes in
density when the overlap is removed. Even though we observedthat some groups
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section of an overlapping pair is removed. Portions are collected in bins of size 10%. This plot
contains 50 data points.

are improved by the removal of intersection, the overwhelming majority of groups
experience a significant decrease in density. We conclude that the overlap is struc-
turally significant.

We now investigate the validity of the groups found, with respect to user traits.
Figure 14(a) shows the average internal pairwise similarity between users within a
community as well as the average similarity between users inconnected random
groups as a function of size. The figure shows that groups produced by CIS have
much larger amounts of similarity between users than the random case for sizes
greater than 10. This value appears lower than random for sizes less than 10 due
to the number of groups which have undefined friendship declarations. The portion
of these groups discovered by CIS and at random are given in Figure 14(b). Figure
14(c) shows the same information as Figure 14(a) but with these undefined friend-
ships removed.

Figure 15 shows the overlap validity measure over pairs of groups with a given
overlap. This value is compared with the overlap validity measure for randomly
selected groups with the same size and overlap. The x-axis denotes the overlap of
the pair, where overlap is defined as the Jaccard index of the two sets. Clearly, there
is a larger difference in similarity between the groups identified via CIS and those
generated at random.

For the 14,903 unique groups that were discovered, 6,373( 30%) of them overlap
with at least one other group such that the pair can be considered justified by the
three conditions previously described. These pairs are composed of 125740 unique
users, a very significant portion of the graph.

Further, a significant portion of the non-separable groups have comparable intra-
group similarity between the intersectionA∩B and both of the setsB−A andA−B.
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If the similarities are considered comparable when they arewithin 5% of each other,
3,544 of the non-separable pairs have an overlap that is associated equally with
the remainder of each group. These groups consist of 100,000unique users. The
existence of these groups is particularly significant in justifying overlap between
communities. They clearly show that many sets of users are equally associated with
distinct groups. Using a partition-based method for the detection of communities
would either merge the entire pair into one group, failing torecognize the dissim-
ilarity between the vertices in setsA−B andB−A, or place the intersection with
A−B or B−A, missing the connection between the intersection and the other set.

6 Summary

Detecting communities in networks is a highly useful, highly non-trivial task. In cer-
tain domains, it is reasonable to expect that community structure overlaps. This ne-
cessitates defining the fundamental notions of what overlapping communities should
look like. The axioms laid out in this chapter attempt to fulfill that need, while at the
same time being as minimal as possible to allow for methodological and application
specific variations.

Additionally, this chapter has shown that having a loosely defined definition of
community structure is often a better choice compared to more restrictive meth-
ods which attempt to discover very specific structural formations in networks. The
ability of a method and definition to produce quality communities across a wide
array of network types is quite important. The axioms laid out in this text provide
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a framework for such methods to be proposed within. We have also shown that in
some networks, the best set of communities will only be foundvia some additional
parameter tuning, particularly those parameters that relate to the size of the groups
discovered.

Previous attempts at developing algorithms for the detection of overlapping com-
munities have been primarily intuitive, and were developedwithout first examining
to what degree overlap occurs in naturally occurring networks. A large amount of
justified overlap indicates that the added complexity of newmethods is essential to
capturing all relationships expressed in the data. As a testnetwork, we examined a
social network composed of communications in a popular blogging service.

The overlap between groups must satisfy certain criteria tobe considered sig-
nificant. First, the inclusion of the common region in eithergroup should enhance
the quality of the groups by some metric. In addition, the groups themselves should
be verifiable as significant through the use of a set of relevant user traits. Finally,
the similarity between components of both groups involved in the overlap must be
such that the intersection is more similar with the remainder of each group than the
remainder of the groups are with each other. If each of these criteria is satisfied,
placing the members of the group in some partitioning will not capture the subtle
associations present in the data.

7 Future Directions

The use of overlapping community structure has significant potential to aid in the
comprehension of underlying processes in an increasingly interconnected world.
Intuition and the empirical observations contained in thischapter suggest that the
associations contained within such communities capture essential and meaningful
relationships which are implicit in the data. The field is farfrom mature, and various
questions have arisen throughout research which remain open problems.

Community detection algorithms have tended to focus on static networks. How-
ever, real world data has the potential to be quite dynamic. As a result, new meth-
ods will need to be proposed to handle network ties with a temporal component.
One simple extension to the work described in this text wouldbe a sociologically
grounded edge weight function. Such a function would take the age of a network
association into account and decrease edge weight accordingly. The introduction of
edge decay creates a potentially interesting area of study involving repetative reop-
timization of sets over time.

An additional open area is the identification of additional methods of validating
and quantifying the correctness of community detection methods. Recent work has
introduced new methods to compare sets of overlapping sets [15], however, more
fundamental analysis techniques should be used for comparison. Additional vali-
dation techniques such as computing feature similarity of identified groups require
data sets with additional, frequently self-reported, information. The problems which
exist with self-reported information can clearly be seen inthe lack of networks with
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a well defined, overlapping “ground truth”. Often, overlapping communities tend to
be more subtle than their disjoint counterparts. As such, itis difficult for individu-
als to list each of the groups with which they associate, as such groups may be ill
defined in the minds of their members.

Another open problem is identifying a method or measure to determine the sig-
nificance of a community among the set of those which have beendiscovered. As
previously stated, using the minimal axioms described above, there are a vast num-
ber of sets which can be considered groups. In order for this type of analysis to
be useful as a feature to some other mechanism, it is likely that the “best” groups
with regard to application specific metrics will prove to be more useful than others.
Significance measures have previously been explored somewhat with regards to dis-
joint community detection [13], but with the exception of a brief comment in [15],
this discussion has largely been absent when examining the detection of overlapping
communities.
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