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1 Introduction

The categorization of vertices in a network is a common taskss a multitude of
domains. Specifically, structural divisions into inteitpalell connected sets have
been shown to be useful in computer science, social scianddjiology. In each of
these areas, grouping vertices using structural bourslaékps one to understand
the underlying processes of a network. Identifying suchugiogs is a non-trivial
task, and a subject of intense research in recent years.

In general, identifying groups of vertices in a network lzhea structural prop-
erties alone is known ammunity detectiaMethods to identify such groups take
a wide variety of approaches, mirroring the diversity in @ams where an accurate
view of structural communities is useful. Depending on tleéirdtion of a com-
munity used, one could discover groups which maximize aajlgbality function,
contain a specific set of substructures, or satisfy a setaf lriteria. Each of these
definitions has resulted in a number of methods which aimadyee the “best” set
of communities relative to the definition chosen.

Rather than focusing on a number of features which difféanthese definitions
and methods from each other, this text will focus on perhlgsrost fundamental
question in the field of community detection; should groupdisjoint or should
they be allowed to overlap?

In the past, the field of community detection has primarilgused on identi-
fying a set of groups such that each vertex in the networksgasd to a single
group. Such a requirement results in a set of disjoint graopering the entire net-
work. However, with the explosion of social network and orelcommunication
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data available, research has expanded towards methods edrisider overlapping
groups.

In the remainder of this text, we will first include a brief dission on the intu-
ition behind disjoint and overlapping communities as welpeovide the reader with
a basic understanding of a small sample of commonly usedadsflor community
detection. Further into the text, we will present the diffi@s involved when detect-
ing overlapping communities and introduce a method foralisdng overlapping
communities which avoids these common pitfalls. This dthor will be presented
with results on real and synthetic benchmark networks.IFinae will show that
in real data, communities which do are natural and necessagpture many of the
associations between vertices in a network.

2 Methods for Detecting Community Structure

The most fundamental division between community defingigmwhether or not
vertices can belong to a single community or any number ofroanities. Justifi-
cations exist for each approach, and ultimately, the selecf which definition to
use is likely domain and application dependent. For ingandien analyzing bi-
ological protein interaction networks, if an analyst wislie generate a taxonomy
of proteins, a hierarchical disjoint method is desired. Whealyzing social net-
works, due to the variety of affiliations and interests thairaividual may have, an
overlapping method may be more appropriate.

We begin with a brief examination of some of the previous wiarkhe area of
community detection to give the reader a sense of currertiadst This examina-
tion is far from complete; it is intended to serve only as @bintroduction. For a
more comprehensive survey covering a variety of methodsjatid please see [8].

2.1 Disjoint Community Detection

The majority of current methods work treat the problem ofalbtg communities

as a hierarchical partitioning problem. According to thg®ach, the community
structure of a network is assumed to be hierarchical; iddizis form disjoint groups
which become subgroups of larger groups until one grouppeming the whole so-

ciety, is formed. Such methods for a tree of subgroup reiattalled a dendrogram.
A dendrogram allows the community structure of a networkeabvarious reso-
lutions. An example of this structure, which is commonlydiss a visual tool for

hierarchical clustering methods, is given in Figure 1.

Originally, the method for detecting a hierarchical grawpin networks was to
repetitively identify edges which do not belong to the samesg subgraph [9, 20].
If we consider a group containing all individuals, and focle@dge, compute the
centrality according to one of a number of definitions (infiation, shortest path,



Defining and Discovering Communities in Social Networks 3

55 gﬂﬂﬁm

202524 927 21721 42216 72811 8 2630 1 512 3 1413231015 6 19 1829

Fig. 1 Dendrogram visualization detailing the merging or spigtcommunities until the entire
society is contained in a single group or until each comnywonsists of a single individual.

circuit, betweenness, etc ). Edges with higher centratires will be ones which
link, rather than compose, dense areas of the network. Siggseare repetitively
removed. Those edges removed first will be edges which forigméfisant connec-

tion between two dense areas of a network. This processaflatibn and removal

is performed until the graph becomes disconnected. Upaoudigction, a single
group splits into two groups containing each components phocess is continued
until each vertex is contained in a group by itself. As a resuhierarchy of splits

is produced, showing the relationship between small granpdarger ones.

This analysis can be quite useful for networks where viswggdéction of the den-
drogram provides an accurate picture of However, this ntethcks the ability to
point out precisely at what level of the hierarchy the “bagtBups have been dis-
covered. For large networks where visual inspection is issfiide or for networks
in which there exists no intuition to suggest the best setafigs, this fact is prob-
lematic. In order to determine the best split in an automatadner, the notion of
modularity[16] has been proposed. This measure can be expressed as

1 kikj

Q:ﬁ”e (AL — ——18(ci,cj) (1)

wheremis the number of edges in a network,; is the edge weight connecting
vertexi and j, ki is the degree of verte andd(ci,c; is a function returning 1 if
the community assignments of verteand vertexj are the same and O otherwise.
Intuitively, the measure expresses the difference bettveenumber of edges inside
communities and the number which are expected to be withomawunity, given
a community’s degree. Given this measure, one can compamdiaularity of all



4 Kelley et al.

levels of the hierarchy and identify the most defined set otigs compared to the
null model.

The introduction of modularity as an evaluation measurerotig quality has
resulted in a number of methods which attempt to optimize ¥aiue. The most
well known of these methods is a greedy agglomerative mathigehally proposed
by Clauset, Newman, and Newman [5]. This algorithm beginplaging vertices
in unique communities and merging those which produce thge# increase in
modularity. Additional methods have been proposed basesimolated anneal-
ing [11], extremal optimization [7], methods from statisti mechanics [22], and
other heuristic optimizations [3]. Recent work has alsatdied a variety of non-
hierarchical utilizing label propagation [21] and mininmg the amount of informa-
tion needed to express random walks in a network [23].

2.2 Overlapping Communities

While hierarchical grouping is valid for some types of netth&ye.g, organizational
networks or taxonomies, intuition and experience sugdestsocial networks con-
tain pairs of communities that overlap while not containesgh other as a sub-
community. Consider an individual in a social network resgrgting “friendship.”
He or she may have friendship relations across many diffeial circles, such as
those formed in the workplace, by a family unit, by a religigroup, or by social
clubs. In this case, assuming social structure of the néttedoe hierarchical might
lead to missing important information about members’ dtaent to the numerous
social circles with which they concurrently interact.

However, the shift from disjoint community assignments ¢m+aisjoint assign-
ments is not a simple one. Various interpretations existhfaw vertices can be
assigned to groups. Specifically, there is some debate abdther the goal is to
identify a weighted assignment from an individual to all gps or a set of binary
assignments indicating an individual’'s membership. Thenfr has been used in
identifying fuzzy groups via probabilistic assignment §&] and maximizing an
overlapping version of modularity [17]. Additional work $iheen done on finding
the best set of communities such that each individual capasdociate witlk sets.
An interesting algorithm based on label propagation carobed in [7]. This text
however, will examine only the problem of deriving a set afidriy individual to
group mappings without such constraints. Such a mappiogvalcommunities to
be discovered at a local level, where a vertex’s associatitina group is deter-
mined independently of any association with other groups.

Methods which identify these non-fuzzy overlapping comitiestend to be one
of two types; either the algorithm attempts to identify arstes of a specific struc-
ture in the network or a modularity value is calculated re¢ato a small subset of
the network. It is important to notice that, unlike the glbimeasure of modularity,
each of these tasks is local in nature.
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2.2.1 Cligque Percolation

An example algorithm which attempts to identify a definedalsubstructure which
is indicative of a community is the Clique Percolation Math&€PM) originally
proposed in [19]. In a nutshell, the algorithm first finds difjees of sizek, called
k-cligues, and defineslaclique graph whose nodes are teliques. Two nodes are
adjacent in the&-clique graph if the corresponding cliques shiare1 nodes. The
nodes in the union of thiecliques corresponding to each connected component are
declared to be a community. Fke= 2, clique percolation defines the communities
as the connected components in the network.

CPM attempts to discover communities by identifying cormlsubgraphs of
sizek. One can claim that, for reasonably sized valueg&,afuch substructure is
clearly an instance of community structure. However, tieifinition sets a very rigid
definition for a community. If one edge of a otherwise compktbgraph is missing
or if two k-cliques overlap by onlk — 2 nodes, it is not considered a community.
Clique percolation would not, for example, be able to findgrmup illustrated in the
toy community in Figure 2. The main problem with such a debniis that it is too
rigid and is uniform over the whole network, requiring alhemunities to share the
same structural composition. Additionally, identifyilkecliques of arbitrary sizes
can be very expensive computationally.

2.2.2 Local Optimization

In an effort to identify communities of various compositioew methods have been
proposed based on the notion of local optimality. Genertilgse methods begin
with some set of seed groups which are then optimized relativa local density
function. The seed groups are considered communities whiagke vertex addition
or removal does not increase the group’s quality relativee density function.
Despite a large number of proposed methods for detectingraomties via lo-
cal optimization [2, 4, 15], there has been a general agreemehe form of the
density function used to optimize seed groups. Intuitivilg search for commu-
nity structure can be viewed as a search for sets of indilsduhich are intensely
connected relative to their isolation with the rest of theamek. Specifically, this
can be expressed in a manner representative of the fundatignisvious literature
as the ratio of edges internal to the set over all edges cteohéx the set. This can
be given as
Win
S Win + Wout @
wherewi, is the number of edges internal to the Sandwg,; is the number of edges
connecting the seb to the rest of the network. This and similar density funcsion
are essentially local modularity measures which attemptagimize internal while
minimizing external edges.
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Fig. 2 A demonstration of local optimality

Methods based on local optimization add and remove a vegtative to a set’s
density when the vertex is evaluated. The implications of Will be discussed at
length later in the chapter. However, for now it is only imiamt to realize that
locally optimal sets are constructed relative to only tineighborhood. This allows
a wide range of communities, with both high and low densite$e discovered.

To motivate why this is important, consider the stylizedrapée in Figure 2.
This figure depicts some form of organized/coordinated-gngup which would in-
tuitively pass as a community (for example, a committee ofFM&/iewers). Since
we allow overlapping groups, a node could belong to mulgpiEmunities, as illus-
trated by the shaded areas. A node belongs simultaneouslistong-community
as well as to other communities. By virtue of belonging tcsthother communities,
the node communicates extensively outside the ring-grespdcially if the node
belongs to many other communities). This means that the disg&ysmore extra-
groupsimilarity than intra-group similarity with respect to thiag-group. There is
no flaw with the intuition that a community should displayrazgroup similarity;
the reason the extra-group similarity can be larger is b&z#ue communities can
overlap. Note that the ring itself in our example, thougls tannectedind appears
structured, is not particularly dense; in fact, if each memdonnects t@ external
nodes, theml(S) = 1/(d + 1), which can be sufficiently small. Other communities
may not have as low a density as this.

We can go further in claiming that this subset should be cmmed a community
independent of the nature of the other communities in thevart Accepting the
locality property of the communities suggests that the methods vdafihe a global
objective function (for example, modularity [16]) and apize it to identify all the
communities might fail to discover the ring-community. Sunethods have found
success in partitioning a network, but when overlap is adidand essential, it is not
even clear how to properly define global objective functions

In the toy ring group shown in Figure 2, the density of our reggnmunity is
d(S)=1/(d+1). One can easily verify that if we remove a nadgom the group,
its density drops to

1
d0+1+93/(|5-2)

d(S—u) = 3)
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Alternatively, suppose we try to add one of the neighboriodesz to S. To illus-
trate, assume that this node has one connectionSiatiod 3 connections to other
nodes. In this case, addizghanges the density to

14y
d(S+2) = m, (4)

which is smaller thaunl(S), whenz has more connections to the outside world than
the average for nodes alreadySnThis means thabis locally optimalwith respect

to single node moves. Thus, the requirement of local optiyneén captureSas a
community.

The main benefits of defining communities as locally optineds$ @re that sets
with vastly different structural properties can be localftimal, with varying den-
sities and that locally optimal communities can overlapt biing able to improve
a community (as measured by the densijyis intuitive; this doesot require a
high density or a specific structure of the community. Thdiediidea of the dis-
cussion is that a community islacally defined object. A community in one part
of the network should not rely on what is going on in anothet pathe network.
Further, community structure can vary over the network —mommication in some
communities can be more intense than in others; their strestcan be different.

3 Local Optimality Examined

The benefits of local optimality as a mechanism to discoverlapping commu-
nities have not been lost on researchers. However, despitergl agreement that
locally optimal sets of vertices form reasonable commasijtihere is a lack of con-
sensus as to the specifics of the notion of local optimalitytier, additional issues
which present themselves when identifying local commasitire largely ignored.
In this section, we begin by examining the notions of locairaplity and density
functions. Consolidating this discussion, the sectiormisctuded with a set of ax-
ioms which we suggest to be the simplest, smallest set @&riaitvhich any local,
overlapping groups should satisfy.

3.1 Vertex Removals and Connectivity

As previously stated, various methods have been proposedhattempt to opti-
mize local density functions to identify potentially ovegoping communities. How-
ever, methods define optimality with respect to differenigasses. In the process of
optimization, some methods allow vertices to be added amdved while others
allow only additions. This results in two different notioofSlocal optimality.
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An additional problem, which exists with any algorithm aliag vertices to
be removed during the optimization, involves the conndégtivf communities. As
shown by the adding condition, whether a vertex is added tmapgor not is de-
termined by the distribution of the the vertex’s degree ab agthe community’s
density at the time of consideration. This may cause a cti¢éxgwhich was previ-
ously inserted into the set based on an earlier, lower detwstie removed, thereby
disconnecting the set. Producing a disconnected set ateeiin a grouping algo-
rithm is clearly a problem and affects those local optim@atlgorithms provided
by Baumes|[2] and Lancichinetti [15].Clauset’s algorithmj4] successfully avoids
this problem by only adding to the group during the optimaatand [24] only
merges candidate groups, ensuring the connectivity ofabelting set.

Examining Figure 3, a graph is shown which demonstratespitiblem. Con-
sider a candidate group being optimized containing onlyexet. Initially, the set’s
density is 0, as there are no internal edges. Upon iterdtiroggh all vertices in or-
der of increasing degree, vertex 2 is added to the clustesréhults in an increase in
density due to the addition of an internal edge. Proceedifdgure 3(c), the group
expands to contain the chains and triangles connectedtexrAt this point how-
ever, the density has increased such that the removal ammdiven above in (7)
is now true. This will result in the removal of vertex 2 and tlisconnection of the
set. Vertex 1 will also be removed producing a locally optideésconnected set.

3.2 Tuning Parameters

Examining the previously defined density function in (2), wish to determine

the conditions by which a vertex is added or removed from #teGonsider the

situation detailed in Figure 4. Here, some veritéx being considered for addition

into the selC. The vertex’s degrelg is split into o and 3 such thata = ;Wi’j,
1S

B= z wi j, andk; = a + B. For the vertex to be added to the set, the density of
I¢gC
CuU{i} must be greater than the density®&lone. Therefore, we have

Win Win +
; ; : (5)
Win +Wout ~ Win + Wout + B
Which can be simplified to
W
— > (6)
B~ Win + Wout
Performing a similar procedure for removals, we arrive at
a Wi
n (7)

< —0
B Win+ Wout

It is clear to see from these two relations, that additiond @movals occur
relative to the density of the set at the time of considenatibis worth examining
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(©) dC) =1 (d) dC) = f

Fig. 3 A sample graph demonstrating the generation of a localljmaf disconnected group.
The density function being used for this examination is (1).

Fig. 4 The breakdown ofr and3 for the addition of a vertex to communi€.
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how this metric behaves when sparse areas of the graph avargaced. Consider
a vertex with degree 2, adjacent to the set being optimizedrea = 3 = 1. Since
there is at least one edge cut by the community’s boundaiglying a density< 1),
vertices matching this description will always be addedn® group. In practice,
this results in groups with a large amount of edges formingaaée” and expanses
of sparse vertices. This is a problem primarily when deakith low degree graphs,
or social networks whose degree distribution is scale fféés effect is shown in
Figure 5. Thel values show how density increases until the entire chaiorsained
within the set. For many applications, such a grouping wdnéldnaccurate, since
vertices on the left and right of the chain are very distat@m be presumed to be
dissimilar.

d=0 d=1/2 d=2/3 d=3/4 d=1

Fig. 5 A sample graph demonstrating the performance of local op#ition on a chain of vertices.

It is unintuitive how a community detection algorithm shduiandle sparse
chains of vertices. At one end of the spectrum, one could iineagach pair of
vertices composing the most salient communities. Howekere could also be an
argument made that the entire chain should compose a grbigcdn be controlled
by adding a parameter to the density function, introducipgaalty for additions
which significantly reduce the edge probability of the conmmity The following
density function is proposed

d(C)

Win

=——+Aep. 8
Win + Wout P ®

wheree,, is the edge probability within the groap

€.j
i,JZEC !

BERCED ®)

€p
andA is a parameter allowing the results to be fine-tuned. Seitiad will produce
the same results as (2), while larger values will increasathount of significance
the internal edge probability of the set has. This also haativantage of producing
smaller groups for larger values afwhich allows groups to be produced across a
wide variety of resolutions. As suggested by Lancichiredttl. in [15], this param-
eter could also be used to determine the significance of grdaups which are
structurally significant could be likely to exist across rarous values ok .
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3.3 Local, Overlapping Axioms

Based on the above observations, as well as previous literat set of axioms can
be described which any local, community detection methadilkshaim to satisfy.
We now state the minimum requirements of a community.

ConnectednessA community should induce a connected subgraph in the net-
work. If the only way to get from one node to another in the camity is via
some external node, it suggests that the community is int&tmp

Local Optimality. According to an appropriate density metd¢), predefined
on all subsets of nodes, the density of a community cannahpeoved with the
removal or addition of a single node.

Note, that the local optimality requirement, but not therectivity requirement,
was first introduced in [1, 2]. Examples can be easily dewadagf locally optimal
sets that induce disconnected subgraphs. Our communiynaxposit, in particu-
lar, that communities are identified “locally,” within orep distance from the set.
Specifically, we require local optimality with respect te thddition or removal of a
single vertex. Previously proposed methods have suggieketifying locally opti-
mal sets with respect to addition only. However, it can beiadghat if a community
can be improved relative to some density function via rerhdvia less meaningful
than one constructed via addition and removal. Additignathe could suggest fur-
ther notions of local optimality which are relative to a largaumber of removals or
additions. These other notions of optimality are left faufie work. As we will see,
these two axioms alone are sufficient for discovering conitreewhich overlap
and satisfy the intuitive properties we expect of a comnyunit

It is important to note that this definition is quite diffetdrom many previous
notions such as those of a “strong” or “weak” community sisgge by Raddichi in
[20] as well as the definition of modularity which was prevstudiscussed. Rather,
this definition focuses on a localized approach that esciytslly formulated null
models and strict edge-based requirements.

Algorithmically, it is not easy to identify all communitiestisfying these prop-
erties, and so we resort to a simple heuristic which we dgsoest. Our goal is to
show that the communities discovered using this heurigéntify salient communi-
ties in both common benchmark data as well as real, obserndid@associations.

4 Connected lterative Scan

In [2], the authors describe a community detection algorjttermed Iterative Scan.
Here we describe a modification of IS to discover communitiepreviously iden-
tified axioms of optimality and connectedness.

Iterative Scan, IS, consists of repeated “scans” eachrgjantith an initial set
developed by the previous scan (a “seed-set” for the firgatiten). It examines
each node of the network once, adding or removing it if suclation increases
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the current density of the set. The scans are repeated hmtkt is locally optimal
with respect to a defined density metric. The choice of thd-sets is not predeter-
mined; they can be the nodes, or the edges of the network. @egdrwe for seeding,
called LinkAggregate, is presented in [1]. LinkAggregdteently produces seed-
sets that form a cover (with some overlap) of the entire westd. The nodes are
evaluated by IS in the order of increasing node-degree, foanto high degree. It-
erative scan in this form had been used for a variety of istarg applications such
as modeling dynamic networks [10]. A similar method, impésing the idea of
the greedy local optimization (as a replacement of a scaB)invas later given in
[15]. For every iteration, the algorithm examines all vegs in order to find the one
which causes the maximum increase of the density. Thatvisrtesed to update the
current set and any density improving removals are theropagd.

The density metric itself can be defined in a number of waysgoalysis uses a
modification of the standard density function in EquatioRather than usinwip,,
recent literature [15] has proposed using using the intema external degree of
all vertices in the group rather than the number of edges iBha slight modifica-
tion, resulting in the the use ofswv, in place ofwi,. For the sake of comparison
to previous work, we will optimize using this density furaoii Our experiments
show that in many social networks, there is a very large spoténtial communi-
ties,i.e., sets that satisfy the two axioms above. Thus, filtering otladate sets is
often necessary and should be done as dictated by the spedifite application in
which community structure is useful. One possibility is tder the candidates by
d(S), and consider as most “interesting” those communities whexd more inter-
nal than external communicatiod(S) > %). This filter is consistent with the notion
of a “weak” community as defined by Raddicddtial in [20] and is done in this
work to restrict the scope of the analysis for computatioeasons. Note that when
overlap is allowed, this additional requirement might netdatisfied by all com-
munities. The other possibility of filtering is to look at themmunities for which
d(s) < % as these communities are still connected and locally @gtieven though
their members communicate outside of the community a sagmififraction of time,
which results in sparse internal communication.

To ensure the connectivity of the identified communitiesmealify 1S and term
the resulting algorithm Connected lterative Scan, CIS.eBesuode for this algo-
rithm is presented in Algorithm 1. As is the case with 1S, Ct®sists of a number
of scans that are repeated for each current set until no ehafribe set occurs. The
set is then declared to be a community. Every scan proceeaisgin the nodes in
the order of increasing node degree. Once a scan is finidhedet's connectivity
is examined. If the set consists of multiple connected caorepts, it is replaced
by the connected component with the highest density, aftéciwthe next scan
starts. Note that selecting only the highest density corapbeffectively sidesteps
the issue of repeatedly optimizing to the same, discondeddtester. The specific
selection of this rule for identifying connected, locallgtonal sets was motivated
by the desire to generate as many groups as possible. Thmguime of the al-
gorithm however, suffers from repetitive connectivity knaions. For applications
where running time is important, one can simply discard éhgets which are not
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Algorithm 1 Connected Iterative Scan
Require: G= (V,E),S#0
Ensure: densityS) >densitySU{v}) & density(S) >densityS\{v}), W eV
improved« true
while improved ==true do
improved« false
forall veV do
if ve Sthen
if densityS\{v}) >densityS) then
S S\{v}
improved« true
end if
else
if densitySU {v}) >density(S) then
S+ Su{v}
improved« true
end if
end if
end for
S«—maxComponerit)
end while

connected as a additional post-processing step. Finalyséeding is this text is
done using placing each vertex in its own initial seed comitgun

The disadvantage of CIS is the same as that of IS; both methagigproduce
a large number of highly overlapping communities. Howetkds problem can be
managed by effective post-processing of results and mgagihighly similar com-
munities. Sample results of CIS for a community analysisaifliary’s Karate Club
data set [25] are given in Figure 6. This network represenés af friendships with
in a collegiate martial arts club. Performing analysis oa data, which was col-
lected while the group was undergoing a fissure, providesesting insight into
the set of individuals for whom selecting which splintergpdo join was not a triv-
ial choice. Using CIS, these individuals exist in the ovelt@tween the two larger
groups in the network. These groups are clearly salient iamiths results are found
across a variety of literature in community detection.

The complexity of CIS is difficult to analyze due to its depende on the number
and quality of the seeds being optimized as well as the uyidgrgraph structure.
However, similar optimization techniques have previo(isly, 1] been empirically
shown to have a running time on the order@fn?). For many graphs, running
time can likely be reduced by introducing higher qualitydseautilizing a simpler
density function, or simply throwing out locally optimalisdonnected sets rather
than checking for connectivity at each iteration. Addiatiy, since the optimization
process is independent for each seed, the algorithm isyhignhllelizable.
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Fig. 6 Overlapping groups found in Zachary’s Karate Club data3#ferent shapes identify the

eventual group division. Groups were ordered to corresporie number of distinct seeds which
produced them. Groups were then selected until the grapltov@sed. Additional examination of

groups which are produced by fewer seeds offers insightaatentially overlapping subgroups of
the primary groups presented here.

4.1 Benchmark Performance

Quantifying the performance of the algorithm is difficultedto the approach.
Namely, few other methods aim to produce a large set of lpagitimal groups.

Rather, they tend to focus on finding partitionings or cowenich best express the
data. In addition, methods which allow for overlap tend tarsaifficient due to the

unsatisfied community axioms. In this section, numerousherarks will be exam-

ined. First, a method to compare two sets of overlappingmgouill be presented.
Next, a small, toy graph with uniform degree proposed by &irand Newman will

be considered. Then, random scale free networks with engoecitmmunity struc-

ture will be explored for the non-overlapping case. Eacthese experiments will
be evaluated via the Normalized Mutual Information measuiginally proposed

in [15].
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4.1.1 GN Benchmark

One of the first benchmarks proposed for community deteetigorithms was pro-
posed by Girvan and Newman in [9]. This benchmark datasesists of 128 ver-
tices divided into four groups of 32. Each vertex has a degfdé. The strength
of the community associations are given by a mixing paranvetéh indicates the
probability that an edge is placed between two communitieer than internal to
a single community. Specifically, this mixing parameteriigeg by

K
A ko

wherek, is the number of edges connecting a vertex to a vertex in anottimmu-
nity andk; are the number of edges connecting a vertex to other vestiits a
community. It should be explicitly noted that this benchkn@ssigns each vertex to
exactly one community during network generation. Despii® it is important that
methods which identify non-disjoint communities be capaiflproducing accurate
communities even when the underlying structures are disjoi

For Connected lterative Scan, the results are given in EiguEach point repre-
sents the average normalized mutual information over 2phgravith a given mix-
ing parameter. Seeds are generated by placing each vertegandidate cluster.
The results shown are a reflection of what is considered thd&iase” settings of
the algorithm. This configuration is the density functioeygously described in the
text, vertices ordered by increasing degree, and seedimglalpplacing each vertex
into a seed group by itself.

The two curves in Figure 7 show the result of taking all logaptimal sets
discovered by the algorithm as well as using some domain laane to filter out the
four most frequently discovered sets. It should be notearésults that the curve
is similar to those produced via other methods, though witfhtly less accuracy
for networks with well defined group structure.

(10)

4.1.2 LFR Disjoint Benchmark

A more realistic set of benchmark graphs can be found usiad¢.#R benchmark.
Here, a scale free graph is generated with communities gingsizes. This bench-
mark was first used in [14] to compare various methods of conityndetection on
a more complex network than the GN benchmark. For the exeatsncontained
within this text, graphs are generated matching a powedkgvee distribution with
oy = 2 and a power-law community size distribution with= 1. For all networks,
the average degree of each vertex is 20 and the max degreemdn@hity sizes are
limited to 10-50 for runs marked “S” and 20-100 for runs mark®”. The output of
CIS is processed for evaluation by removing duplicate comitims and removing
those communities which contain the entire graph. Each-plaitat represents the
average of 25 trials.
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Mutual Information on GN Benchmark Graphs
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Fig. 7 Normalized mutual information for Connected Iterative i5oa GN benchmark graphs

The results of this analysis using CIS and CPM are given inf@éi@. Figure 8(a)
clearly shows the limitations of identifying a specific stiwre when compared to
Figures 8(b)-8(d). Identifying overlapping cliques is rhuess accurate as group
size increases. While CPM produces better results for n&swwith well defined,
small communities, Connected Iterative Scan producesgbedsults in networks
with larger community sizes as well as those networks wils lgell defined com-
munities. The quality of the communities produced via CkSamparatively stable
in the face of changing community and graph properties.

4.1.3 LFR Overlapping Benchmark

The LFR benchmark software also allows groups to be embesldgdthat a given
portion of individuals exist in a specified number of groupsis allows algorithms
to be compared on networks with known community overlapifigikhe same de-
gree and community size distributions as the previous sstpdriments, Connected
Iterative Scan and CPM can be compared at varying levelserfay. Figures 9 and
10 detail the results of this comparison for 10% and 30% ofW#réces existing in
2 communities. Again, the same general trend exists; ity@mgi communities by
looking for a set of rigid structural traits fails to identiirger embedded communi-
ties, while those produced by CIS are discovered with theesaenuracy regardless
of community composition.
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communities

4.2 A value

Intuitively, inclusion of the internal edge probabilitytime density function for Con-
nected Iterative Scan allows the algorithm to be tuned toosisr different types of
communities. It introduces a criteria for addition diffetérom what was initially
proposed during the development of Iterative Scan. WhenO, the vertex being
considered for addition must strike a balance between thegdhin the original
density value and the change in edge probability.

This effect can be seen in real networks as well. In this aiglye consider a
network in which vertices represent football teams affiléhtvith universities within
the United States. Typically, teams are members of conéexewithin which they
play a significant portion of their games. Edges in the netwidicate that two
teams played each other. Groupings produced by Conneetedive Scan can be
compared to the natural divisions created by conferences.

Groupings were performed using a number of different vabigs and filtering
the communities by taking only the most discovered groupe. flormalized mu-
tual information between the true grouping and the discadygrouping are plotted
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in Figure 11. The peak at = 0.125 indicates the grouping which most closely
matches the underlying conference structure of the netvi@uklitatively, the dif-
ference betweed = 0 andA = 0.125 is an increased focus on small, tight-knit
cores.

5 Significance of Overlap

In order to demonstrate that group overlap is a significaatufe of some social
networks, it is important first to consider the features \whpairs of groups should
have to indicate that the overlap between them is signific@absider the over-
lapping groups presented in Figure 12. Here gréduponsists of white and grey
vertices, and group consists of the the black and grey vertices. By this definjtio
individuals represented by vertices colored grey are mesnifeboth groupA and
B.
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For a pair of overlapping groups to hasignificantoverlap, and thus be consid-
ered anon-separable pajrthe groups and their overlap must fit certain criteria. In
general, each criterion serves to identify quality of oapging groups that cannot
be expressed via a single group (the union), or two, or thaetitjons. These criteria
can be described conceptually as follows.

5.1 Structural Significance

The existence of overlap between a pair of groups shouldrexghide “quality” of
each of the groups individually. For example, if the quatifyeach group is mea-
sured by the ratio of edges internal to the group to thoselwdrie cut by the bound-
ary of the group, removind N B from A andB in the groups expressed in Figure
12 would result in a decrease in the quality of each group.t®oevertices in the
intersectionAN B have the same degree within each group as they have external t
each group. Thus, relative to the previous quality methe, tertices should be a
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Fig. 12 An example of a pair of groups that overlap. The overlap istified by the grey vertices
while individuals in only one group are colored black or wehitepending on the group of which
they are a member.

part of each group since they increase the numerator whitérigpthe denomina-
tor constant. Therefore, the overlap is the key to the siratsignificance of both
groups in Figure 12.

5.2 Group Validity

It is also important that each group be somehow verifiablagusi reasonable
method relative to the input data. Ideally, using some ugiahey traits of the in-
dividuals in the network being analyzed, groups should laghker trait similarity
between members than one would expect if membership in gnoepe determined
at random. Examples of this type of validation have been usedrious previous
literature, using age and location as traits of the indigld18]. Group validity is
essential in filtering out groups that are products of randtvactures in the underly-
ing communication graph, and serves to ensure that the gletggtion is accurate.

5.3 Overlap Validity

Using the same notion of trait similarity, the individualéthin the overlap must
have some similarity with the remainder of each group of Wwiiey are a member.
In Figure 12, the graph is divided into three groulds; B, B— A, andAN B (white,
black, and grey respectively). For overlap to be important,B andAN B must be
similar, B— A andANB must be similar, and — B andB — A must be dissimilar,
relative to certain significant traits in the data, that giwduals in the overlap need
to be clearly similar to the remainder of either group. Hoereit is necessary that
the remaining individuals in each group be dissimilar tosthan the other group.
If this dissimilarity does not exist, the overlapping padndoe captured in a single
partition and overlap is not necessary to explain the iatiips in the data.
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Pairs of groups that satisfy each of these criteria are foneadally sound com-
munities due to their structural significance and their graalidity. Conceptually,
the existence of overlap validity restricts how the indisads can be placed in a par-
titioning. If all users of the three groups are placed in al&rpartition, dissimilar
vertices inA— B andB — A are associated. If the vertices are placed in three par-
titions according to color, a strong association betw&erB and bothA — B and
B — Ais missed. The vertices may be placed in a pair of disjointigsaonly if the
similarity betweerAN B and bothA — B andB — A is highly unbalanced. If the two
similarities are comparable, however, one does not hav#igasion to place the
users in one group or the other. A detailed description ofiehthese cases is given
further in the text. Significant numbers of non-separablespadicate that overlap
is an essential component of communities within the network

5.4 Measures

It becomes necessary to formulate a set of methodologiesiioate whether the
notions of group validity and overlap validity are satisfieda given community or
pair of communities. We begin by identifying the set of dadadiin the analysis.

Due to the implementation of the Friend Feed provided by Jawgnal, friend-
ship declarations can serve as an indicator of interesteBladng a friendship, the
declaring user is notified whenever his or her friend makessa |it can be assumed
that individuals which attract a large number of these flidaclarations are highly
important to the discourse on some set of topics. Thus,dakip declarations serve
as a proxy for some set of declared interests from each uséhid analysis, an
individual is defined as influential if he or she has a frierplé-degree of 300 or
more. This criteria marks approximately 4,800 bloggersiaéntial.

The selection of a subset of the friendship relations wa® donpurely compu-
tational reasons, cutting the set of possible friend retegtirom 500,000 to 5,000.
Additionally, interest declarations could be used as aiah data. However, within
LiveJournal, this data is entered via comma separated sjatasulting in a much
larger set of possible declarations. Additionally, the ylapdeclared interests, such
as "books”, "movies”, or "'music”, are much more universahmhthe most popu-
lar friendships. Further, words typed with spelling err@isbreviations, slang, and
the use of synonyms can all be indicative of the same set adgophe friendship
relationship is used in this situation because of its cdroess.

Now, given that each vertéhas a set of declared friendshigswe can describe
our validation measures. The group validity requiremeainet that there should
be more similarity within the group than one would find at ramd To measure
this, we define the notion afiternal pairwise similarity(denoted PS). For a given
communityC, the internal pairwise similarity can be computed as
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icc Y jec i J(Fi, Fj
IPS(C) = 2 CZ|JC|§J_#|CT ) (11)

whereJ(F,F;) is the Jaccard index [12] between the two sets. This valuebean

expressed as

_ IRNF]
I/ UF|

J(F,Fy) (12)

The valuel(F;, Fj) will be maximized §(F;, Fj) = 1) if the setd5 andF; are iden-
tical and will be minimized {(F;, Fj) = 0) if the two sets are disjoint. Intermediate
values ofJ(F;, F;) indicate shared friendships and is normalized by the nuraber
possible shared friendships between the two individudisisTthel PS value mea-
sures the average similarity between the friendship detitars of pairs within the
community. This value is utilized in place of Normalized Mat Information dis-
cussed earlier due to the fact that the “ground truth” in itisation is unknown.

Reuvisiting the notion of overlap validity, it becomes apgatrthat a method com-
paring sets of friendship declarations are needed. Givairapoverlapping com-
munitiesA andB, three friendship declaration vectors can be computeds@tec-
tors, denoted.p g, Lg_a, andLang, give the probability that a vertex within each
set indicated by the subscript will declare a given indialdin the popular friend
set as a friend. Formally, 5 can be defined for each of the elementé gfg as

U {x|x € ANB,i € K}|

(13)

whereF is the set of friends declared for vertexSimilar vectors can be defined
for La_B andLB,A.

Once these vectors are constructed, the similarity betwaeh of them can be
calculated via theosinesimilarity. Formally, this can be given, relative to two edju
dimension vectorX andY, as

XY

oS Ex) = [ 4

A low value ofcog Bx v) indicates that the vectod andyY are close to orthogonal.
High values indicate that the vectors have similar valuessscmany dimensions.

Given the three friendship declaration vectors descrilredipusly, thecosine
similarity between them can give an indication as to whetinerot the overlapping
group satisfies the overlap validity requirement. Naméilgf the inter-group sim-
ilarity cog 6., 5 Lg 4) b€ less than the intra-group similaritiesg 6., 4 5) @and
CoieLB—AﬁLAﬂB)'

In order to simplify this notion, the intra-group and ingeup similarities can
be combined into a single statistic representing the vaaimilarity between the
three sets. For the sake of notation, let the inter-grouasiity cog 6., 5 ») be
given by the variablenter and let each of the intra-group similaritiess 6. a—s AB)
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andcog 65 ,.5) b€ given byintraa andintrag respectively. These values can be
combined into a measure of overlap validity as

intraa —+ intrag

OV(A,B) = 5

—inter (15)

for values of OVA B) > 0, the intersection is more similar to each group than the
remainder of each group is with each other, indicating thatverlap is split in its
association with each set.

5.5 Results on LiveJournal

We applied the Connected Iterative Scan algorithm, ClSed iveJournal dataset
to produce a set of communities which satisfy the axioms. M partitioned this
graph using the algorithm CNM designed by Clauset, Newmaaeh Moore ([5]) to
give the reader a point of reference and to demonstrate fieeatice in community
sets produced by the two methods. Statistics demonstrdt@gumber of groups,
average size, average density, modulai@y ¢nly applicable for the partitioning),
and the number of vertices which are placed in at least oneruoity are given in
Table 1.

Statistics of Groups Found via CNM and CIS

Groups AvSize AvDeng) Cov
CNM 264 1190 0.745 0.485 100%
CIS 14903 168.8 0.455 -— 47.5V%

Table 1 Statistics of groups from CNM and CI® shows the modularity value of the grouping
generated by CNM and “Cov” indicates the portion of vertiaésch are in at least one group.

The partitioning produces a small number of sets across a vddety of sizes,
while the overlapping group detection produces a much tamgenber of smaller
groups which do not cover the entire graph. Coverage is neqairement; it is not
necessary for every node to belong to a cluster. Rather, avimtarested in finding
those groups which naturally overlap and studying the Siarce of this overlap.

If the overlapping groups detected fit the requirement ofifigagtructural sig-
nificance, removal of a pair's overlap will produce a deceeiasgroup quality, as
measured by the densitly Overlapping groups are more compelling when the over-
lap is structurally necessary for each group. After filtgrout subset inclusion (a
trivial form of overlap), the remaining overlapping groutisplay a high degree of
structural significance for the overlap. Specifically, f@.&% of the overlapping
pairs, both groups in the pair experience a decrease intgiéhsie intersection
is removed. Figure 13 shows more details of the exact digtab of changes in
density when the overlap is removed. Even though we obsehadome groups
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Fig. 13 Portion of clusters that experience a given percentagegehemdensity when the inter-
section of an overlapping pair is removed. Portions areect#d in bins of size 10%. This plot
contains 50 data points.

are improved by the removal of intersection, the overwhegnmajority of groups
experience a significant decrease in density. We concluatdtie overlap is struc-
turally significant.

We now investigate the validity of the groups found, withpest to user traits.
Figure 14(a) shows the average internal pairwise simfldo@tween users within a
community as well as the average similarity between usermimected random
groups as a function of size. The figure shows that groupsugeatiby CIS have
much larger amounts of similarity between users than thdamancase for sizes
greater than 10. This value appears lower than random fes $&ss than 10 due
to the number of groups which have undefined friendship datitens. The portion
of these groups discovered by CIS and at random are giveryiré-iL4(b). Figure
14(c) shows the same information as Figure 14(a) but witkehmdefined friend-
ships removed.

Figure 15 shows the overlap validity measure over pairs ofigs with a given
overlap. This value is compared with the overlap validityasuere for randomly
selected groups with the same size and overlap. The x-arsteiethe overlap of
the pair, where overlap is defined as the Jaccard index ohineéts. Clearly, there
is a larger difference in similarity between the groups tdfie via CIS and those
generated at random.

For the 14,903 unique groups that were discovered, 6,378] 80them overlap
with at least one other group such that the pair can be camrsldestified by the
three conditions previously described. These pairs argposed of 125740 unique
users, a very significant portion of the graph.

Further, a significant portion of the non-separable grogve ftomparable intra-
group similarity between the intersectiém B and both of the set8 — AandA—B.
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Fig. 14 Plot showing the average pairwise Jaccard Index of verterdships for all pairs within
discovered communities of the same size and values foundndomly generated connected
groups of the same size. The plot indicates that there is simiarity in a majority of the discov-
ered groups than one would expect at random.
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Difference between Intragroup Similarity and Intergroup Similarity
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Fig. 15 Curves showing the average overlap validity measur¢/OB) for identified, non-subset
overlapping pairs and random groups of the same size anthpver

If the similarities are considered comparable when theywten 5% of each other,
3,544 of the non-separable pairs have an overlap that iiasso equally with

the remainder of each group. These groups consist of 10Q0QQe users. The
existence of these groups is particularly significant irtifyisg overlap between
communities. They clearly show that many sets of users arallycassociated with
distinct groups. Using a partition-based method for thect@n of communities
would either merge the entire pair into one group, failinggoognize the dissim-
ilarity between the vertices in sefs— B andB — A, or place the intersection with
A—BorB— A, missing the connection between the intersection and tier set.

6 Summary

Detecting communities in networks is a highly useful, hyghdn-trivial task. In cer-
tain domains, it is reasonable to expect that communitycgire overlaps. This ne-
cessitates defining the fundamental notions of what ovpittgcommunities should
look like. The axioms laid out in this chapter attempt to flifiat need, while at the
same time being as minimal as possible to allow for methagioéband application
specific variations.

Additionally, this chapter has shown that having a loosefireed definition of
community structure is often a better choice compared toemestrictive meth-
ods which attempt to discover very specific structural farame in networks. The
ability of a method and definition to produce quality comnti@si across a wide
array of network types is quite important. The axioms laidliouhis text provide
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a framework for such methods to be proposed within. We hase stiown that in
some networks, the best set of communities will only be fovindsome additional
parameter tuning, particularly those parameters thaterétethe size of the groups
discovered.

Previous attempts at developing algorithms for the deieaif overlapping com-
munities have been primarily intuitive, and were developé@tout first examining
to what degree overlap occurs in naturally occurring neltaoA large amount of
justified overlap indicates that the added complexity of mesthods is essential to
capturing all relationships expressed in the data. As an&tstork, we examined a
social network composed of communications in a popularditogservice.

The overlap between groups must satisfy certain criteriaet@onsidered sig-
nificant. First, the inclusion of the common region in eitigeoup should enhance
the quality of the groups by some metric. In addition, theugpthemselves should
be verifiable as significant through the use of a set of relevaer traits. Finally,
the similarity between components of both groups involvethe overlap must be
such that the intersection is more similar with the remaimd@ach group than the
remainder of the groups are with each other. If each of thageria is satisfied,
placing the members of the group in some partitioning will capture the subtle
associations present in the data.

7 Future Directions

The use of overlapping community structure has significatémtial to aid in the
comprehension of underlying processes in an increasimgérdonnected world.
Intuition and the empirical observations contained in tfiapter suggest that the
associations contained within such communities captwergsl and meaningful
relationships which are implicit in the data. The field isffam mature, and various
questions have arisen throughout research which remammioblems.

Community detection algorithms have tended to focus oicstatworks. How-
ever, real world data has the potential to be quite dynamscaAesult, new meth-
ods will need to be proposed to handle network ties with a tealcomponent.
One simple extension to the work described in this text wdndda sociologically
grounded edge weight function. Such a function would takeatye of a network
association into account and decrease edge weight acgbydiime introduction of
edge decay creates a potentially interesting area of stwayving repetative reop-
timization of sets over time.

An additional open area is the identification of additiona&thods of validating
and quantifying the correctness of community detectiorhods. Recent work has
introduced new methods to compare sets of overlapping $6jsfjowever, more
fundamental analysis techniques should be used for cosgrarAdditional vali-
dation techniques such as computing feature similaritgentified groups require
data sets with additional, frequently self-reported, infation. The problems which
exist with self-reported information can clearly be seethmlack of networks with
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a well defined, overlapping “ground truth”. Often, overlagpcommunities tend to
be more subtle than their disjoint counterparts. As sudh,difficult for individu-
als to list each of the groups with which they associate, ah guoups may be ill
defined in the minds of their members.

Another open problem is identifying a method or measure terd@ne the sig-

previously stated, using the minimal axioms described apthere are a vast num-
ber of sets which can be considered groups. In order for yipis bf analysis to
be useful as a feature to some other mechanism, it is likeliyttre “best” groups
with regard to application specific metrics will prove to benmuseful than others.
Significance measures have previously been explored soatevith regards to dis-
joint community detection [13], but with the exception of @b comment in [15],
this discussion has largely been absent when examiningetieetibn of overlapping
communities.
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